CUPHEA CARTHAGENENSIS: A REVIEW OF ITS ETHNOBOTANY, PHARMACOLOGY AND PHYTOCHEMISTRY

Anupriya Das¹, Sushil K. Chaudary², Hans Raj Bhat¹, Anshul Shakya^{*1}

¹Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh- 786 004, Assam, India

²Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa. *E-mail: anshulshakya@dibru.ac.in

Abstract

Medicinal herbs and plant extracts are now generally considered as effective medicines to be respected, appreciated and they play a major role in modern health care system. Genus Cuphea is a largest of the 32 genera of Lythraceae family with about 260 species. It is herbaceous perennial small shrubs, native to warm temperature to tropical regions. Commonly they are known as 'Cuphea' and/or 'Cigar plants'. The Cuphea plants are generally used for traditional medicinal value. In native countries, the plants of this species are collected and are used as anti protazoal, blood purifier, diuretic, emmenagogue, hypotensive, laxative, purgative, viral diseases, cardiovascular diseases and menstruation problems. Species of Cuphea are important source of seed lipids, rich in short and median chain fatty acids. In this communication, one of the potential species of this genus *Cuphea carthagenensis* (Jacq.) J.F. Macbr. has been reviewed for their pharmacognostical, ethnomedicinal, pharmacological and phytochemical profile.

Keywords: Cuphea, Ethnobotany; Pharmacology; Phytochemical

INTRODUCTION

The Genus Cuphea distributed all over the World and used in traditional medicine in many regions. Medicinal herbs and plant extracts are now generally considered as medicines effective to be respected, appreciated and they play a major role in current scenario. It has been widely used in ancient traditional medicine in South and Central America (Graham, 1988). In native countries the plants of *Cuphea pinetorum* are used as an antiprotozoal in Mayan (Calzada et al., 2005). The leaves and stems of Cuphea glutinosa are a blood purifier, diuretic, emmenagogue, hypotensive, laxative and purgative (Uphof, 1959). They are used in treatment of high blood pressure, menstrual disorders, pailpitations (Sülsen et al., 2006). Cuphea aequipetala is used as antibacterial against Helicobacter pylori (Palacios et al., 2013). It is also used as anti-hypertensive (Krepsky et al., 2010) and antinociceptive

(Schuldt et al., 2004). It is a potent antioxidant as because it inhibits lipoperoxidation and TNF- α release (Campana et al., 2015). Species of *Cuphea* have been deserved much attention as a potential source of seed lipids rich in short and median chain fatty acids. The seeds oil of some species is very rich in one particular fatty acid i.e. caprylic acid. *Cuphea painteri* oil contains about 3/4 caprylic acid. *Cuphea carthagenensis* oil consists of about 80% lauric acid. *Cuphea koehneana* oil may be the richest natural source of single fatty acids with 95% of capric acid (Graham, 2016).

Cuphea carthagenensis is a natural herbaceous weed of Lythraceae family, commonly known as 'Colombian waxweed' (Graham, 1975). It is mostly used to treat diseases like hypertension, cardiovascular diseases, fever, viral diseases like herpes etc. *Cuphea carthagenensis* has always been confused with *Cuphea viscosissima* a species native to eastern USA (Graham, 1988; Graham 1975). They can be distinguished by the colour of the floral tube which is green in *Cuphea Carthagenensis* and the purple-green in *Cuphea viscoissima*. *Cuphea strigulosa*, a species from tropical America, is similar to *Cuphea carthagenensis* which can be distinguished by having creeping, rooting stems (Graham, 1988).

MATERIALS AND METHODS

Extensive literature search has been done using search engine *viz.* Pub Med, Scopus, Web of science and Google Scholar from March 2018 to May 2018, using the term(s) *'Cuphea carthagenensis*'or *'Cuphea'* along with ethnobotany, pharmacology, phytochemical. A range of articles has been retrieved. Some of the important articles have been selected to compile the ethnobotanical, phytochemical as pharmacological indications of the plant.

Plant Profile

Taxonomical classificationKingdom: PlantaePhylum: SpermatophytaSub Kingdom: TracheobiontaSuper Division: SpermatophytaDivision: MagnoliophytaClass: DicotyledonaeOrder: MyrtalesFamily: LythraceaeGenus: CupheaSpecies: Cuphea carthagenensisSynonyms: Lythrum carthagenense, Cupheabalsamona

Common names

Assam: Pani Jetuka Brazil: Sete-sangrias (Anonymous, 2015g) Fijian: Kerisi, Lasahia (Smith, 1985) Spanish: Escobilla (Anonymous, 2015g) English: Colombian cuphea, Colombian waxweed, Tarweed (Welsh, 1998)

Distribution

The plant is widely distributed worldwide (table 1). It is generally found in Asia, Oceania, South America, North America, Africa, Central America and Caribbean.

Table	1:	The	distribution	of	Cuphea
carthag	genen	sis			

-	-	-	
S1.	Country /	Inva-	Citation
	region	Sive	
1.	China	Yes	Xu et al., 2012
2.	East Timor	Yes	Acevedo et al.,
			2015
3.	India		
	Arunachal	Yes	
	Pradesh		Naithan and
	Assam	Yes	Bennet, 1990
	Nagaland	Yes	
	West Bengal	Yes	Paul and Kumar,
	C		2012
4.	Indonesia	No	Anonymous,
			2015d; Solfiyeni et
			al., 2013
	Irian Jaya	No	Anonymous,
	5		2015d
5.	Japan	_	Mito and Uesugi,
	1		2004
	Ryukyu	_	Mito and Uesugi,
	Archipelago		2004
6.	Malaysia	_	Kiew, 2008
7.	Myanmar	_	Anonymous, 2015c
8.	Philippines	_	Mckaughan and
	11		Macaraya, 1965
9.	Singapore	_	Chong et al., 2009
10.	Taiwan	_	Anonymous,
			2015e
11.	Cameroon	_	Anonymous,
			2015h
12.	Guinea	_	Anonymous, 2015e
	Mexico	_	Matuda, 1950
	USA	1	
	Alabama	_	Graham, 1975
	Arkansas	_	Sundell et al., 1999
	Florida	Yes	Graham, 1975
	Hawaii	_	Mann, 1866
	Louisiana	_	Correll et al., 1941
	North Carolina		
I	riorui Caronna	1	

Morphology

	South Carolina		Ahles et al., 1958
		_	
	Texas		Correll et al., 1941
	Virginia	No	DeBerry et al., 2007
15.	Barbados	_	Graham, 2003
16.	Costa Rica	I	
17.	El Salvador	I	Anonymous, 2015e
18.	Puerto Rico	No	Loigier and Martorell, 1982
19.	Nicaragua	_	
20.	Panama	Yes	
21.	Belize	_	Anonymous, 2015e
22.	Guatemala	_	
23.	Honduras	_	
	Martinique	_	
	Saint Lucia	_	Graham , 2003
	Argentina	_	,
	Bolivia	_	Anonymous, 2015e
	Brazil	_	Anonymous,
			2015e; Barroso,
			1954; Anonymous,
			2015b
29.	Colombia	_	
	Ecuador	_	Barroso, 1954
	French Guiana	_	,
	Guyana	_	Anonymous, 2015e
	Paraguay	_	,
-	Peru	_	Barroso, 1954
35.	Venezuela	_	
36.	America	Yes	Whistler, 1998
	Samoa		, , , , , , , , , , , , , , , , , , , ,
37.	Australia	_	Downey et al.,
			2010
	New South	_	
	Wales		Anonymous,
	Queensland	_	2015d
38.	Fiji	_	Smith,1985;
	~		Franklin et al.,
			2008; Anonymous,
			2015g
39.	New	_	Hequet et al., 2009
	Caledonia		
			Anonymous,
40.	Samoa	_	i monymous,
40.	Samoa	_	2015a
40.		-	
	Samoa Tonga	-	2015a
		- -	2015a Space and Flynn,

spreading herb up to a foot tall, viscid-pilose with intermixed glandular and non-glandular hairs in the stem (Fig.1). Flowers arises from leaf apex, generally pink in colour, solitary or in small racemes, 4.5-6 mm long, floral tube has glandular hairs. Calyx 6, 3-5 mm in length, green in colour, lobes unequal, short bristletipped. Petals 6, slightly unequal (Fig. 2 and 3). Stamens 2-3 mm long, linear-elliptical, pale purple in colour, longer than floral tube. The branches 10-30 cm tall with stiff hairs (Fig. 4 and 5), leaves opposite, subsessile to short petiolate, apex acute base is narrow, hairy and small in size (Fig. 6 and 7). Seeds 3, 2 mm long, lenticular, olive to brown in colour (Graham, 1975).

Cuphea carthagenensis is an erect

Environment Impact

Cuphea carthagenensis is occasionally found within undistributed intact natural habitats. When it invades such ecosystem it doesn't seem to effectively displace native species or alter ecosystem functions. This is due to small in size and the low densities of invasion. Cuphea carthagenensis may have an effect on some crops but the severity of its impact is not well known. It is an agricultural weed in both in its native and introduced range. It is also found in the roadside rather than in the crop fields in India. It is considered as one of the important weed of crops because of its abundance and competitive effects in Sao Paulo, Brazil (Pio, 1980). In Hawaii, it is recognised as a weed in the cucumber fields (Valenzuela et al., 1994). It is a dominant weed in the puddle rice in Assam, India (Randhawa et al., 2006). In Indonesia, where it dominants corn plantings, it is considered one of the top ten weeds (Solfiyeni et al., 2013). On Vanuatu, it is a serious pest of coconut groves and in pastures (Mullen, 2009).

Resistance to paraquat in taro fields in Fiji, where it is applied as a direct spray between rows (Heap, 2015; Preston, 2015). In Australia, it is a pasture weed. It is also a weed in taro in Fiji (Robert, 1970). In Louisiana USA, *Cuphea carthagenensis* has caused crop impactions in bobwhite quail an important game species (Hurst, 1978). This could indicate hunting yields in South-Eastern USA.

Traditional Indication

In Assam, it is known as 'Pani Jetuka' used as a medicine during menstruation pain. The leaves of the plant are crushed and the juice is taken raw. This procedure of treating pain is practiced in "Karbi Anglong" district in Assam, India. It is used to treat disorders like circulatory disorders, cardiovascular disorders, arterial hypertension, arteriosclerosis etc. It is used also as diaphoretic and diuretic. Leaves decoction of *Cuphea carthagenensis* is taken orally and used for treatment of vaginal infections and weakness (Coe, 2008). *Cuphea carthagenensis* is used as weight control remedy in traditional practice in south Brazil (Dickel et al., 2007).

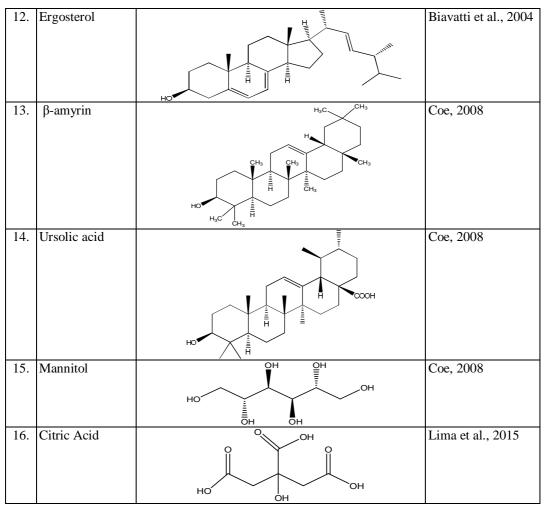
Phytochemical Profile

It is rich in different phytoconstituents like phenolic, triterpenoids, flavonoids, tannis, unsaturated fatty acids, steroids, polyphenolic compounds, etc., (table 2). Their chemical structures are presented in table 3.

Sl.	Species	Plant	Type of	Phytochemical	Pharmacologica	References
		part used	extract		l properties	
1.	Cuphea	AE	Aqueous	Phenolic; flavonoid	Gastroprotectiv	Palacios et
	aequipetala				e, Antibacterial	al., 2013
2.	Cuphea	AE	Ethyl	B-sitosterol-3-o-β-glucoside;	Antioxidant,	Zago et al.,
	glutinosa		acetate,	kaempeferol; quercetin;	Treatment of	2018
			Aqueous	isoquercetin; gallic acid; methyl ester;	cardiac disorder	
3.	Cuphea	AE	Ethanol,	Not reported	Anti-oxidant,	Ramirez et
	calophylla		Methanol,	_	Anti-	al., 2018
			Aqueous		inflammatory	
4.	Cuphea	AE,	Not	Flavonoid glycoside;	Antiamoebic,	Calzada et
	pinetorum	roots	reported	quercetin-3-o-	Antigiardial	al., 2005
				rhamnopyranoside; luteolin-	activity	
				7-O-glucopyranoside;		
				squalen; β - sitosterol;		
				kaempferol; quercetin		
5.	Cuphea	AE,	Not	Friedelan-3-β-ol; ferneol;	Respiratory	Uphof,
	wrightii	seeds	reported	germanicol; ursolic acid; 3-	illness	1959
				O-β-glucopyranosyl-β-		
				sitosterol; glucoluteolin;		
				hyperin; mannitol		
6.	Cuphea	AE	Aqueous,	Friedelan- 3β -ol, ursolic acid;	Antioxidant and	
	hyssopifolia		Methanol	quercetin; quercetin-3-O-α-	Cytotoxic effect	
				rhamnopyranoside; 1,2,3,4,6-		Uphof,
				penta-O-galloyl-β-D-glucose;		1959
				mannitol; methyl gallate; 1,3-		

Table 2: Phytochemical and pharmacological actions of Cuphea species

				Odigalloyl-4-6- hexahydroxydiphenoyl – β-D-4C1-glucopyarnose; gallic acid		
7.	Cuphea ignea	AE	Aqueous, Ethanol	Phenolic; coumarin	Antioxidant and Anti cancer	Moustafa et al., 2018
8.	Cuphea palustris	Seeds	Not reported	Not reported	Accumulation of fatty acids in <i>Yarrowia</i> <i>lipolytica</i>	Stefan et al., 2015
9.	Cuphea aequipetala	Roots, stems and leaves	Menthol	Phenolic; flavanoid	Antioxidant	Blanca et al., 2012


Das et al., 2018: CUPHEA CARTHAGENENSIS: A REVIEW

[Legend: AE- Aerial part]

Table 3: Phytochemical constituents of <i>Cuphea carthagenensis</i> and its chemical structure
--

S1.	Phytochemical	Structures	Citation
1.	Quercetin-3- sulfate		Krepsky et al., 2010; Isidorio et al., 2012
2.	Quercetin-5-O-β- glucopyranoside		Krepsky et al., 2012; Barbozal et al., 2016
3.	Quercetin 3-O-α arbinofuranoside		Krepsky et al., 2012
4.	Rutin	HO O O O O O O O O O O O O O O O O O O	Barbozal et al., 2016

5. (HO	D 1 1 (1)
5.	Quercetin- glucoronide		Barbozal et al., 2016
ε	giueoronide	HO 20 OH	2010
		но	
		он /	
б. Т	Friterpenoids	\times	Schuldt et al., 2000
		, M	
		Соон	
		HO	
		HO HO	
	Kaemferol-3-O-	OH	Schuldt et al., 2000
r	rutinoside	HO	
		он он он	
		°. T	
		он	
		но он	
		Υ Ύ	
		HOTO	
0.1			G 1 2006
8. I	Lauric acid	0 	Crane et al., 2006
9. N	Myristic acid	H ² C, A A A A A A A A A A A A A A A A A A A	Crane et al., 2006
<i>J</i> . I	wrymstie acid	HO	Clane et al., 2000
10. β	3-sitosterol		Biavatti et al., 2004
		çH ₃ H	
11. S	Stigmasterol		Lima et al., 2015
	6		
		но	

Das et al., 2018: CUPHEA CARTHAGENENSIS: A REVIEW

Pharmacological Profile

Many of the systematic pharmacological activity has been explored using different types of extracts of *Cuphea carthagenensis*

viz. antiviral, antimicrobial and antiinflammatory, antinociceptive, cardiovascular activities (table 4).

	Plant part	Extracts	Phytochemicals		cess	Model used/ parts of the model	Citation
1.	AP	-	Quercetin-3- sulfate			Pre-contracted rat aortic rings	1 2
2	Leaves	Crude hydro	Phenolic	Inhibit deoxy	In -	Rat liver	Schuldt et

Table 4: Pharmacological profile of Cuphea carthagenensis

		alcoholic	compounds	ribose degradation	vitro		al., 2004
3	Leaves	Butanolic fraction and ethyl acetate fraction	Phenolic compounds	Inhibition of lipoperoxidation	In - vitro	Rat liver	Schuldt et al., 2004
	Leaves	Butanolic and ethyl acetate fraction	Phenolic compounds	Vasorelaxant activity	In- vitro	Endothelium intact rings of rat thoracic aorta	Schuldt et al., 2004
5.	AP	Aqueous and alcoholic	Quercetin-3- sulfate, quercetin- 5-O- β - glucopyranoside, quercetin-3-O- α arbinofuranoside	Vasodilation	In- vitro	Male wistar Rats (Thoracic aorta)	Krepsky et al., 2012
6.	Leaves	Alcoholic	Flavanol glycosides (kaempferol, quercetin & myricetin); quercetin-5-O-β- glucopyranoside; rutin; quercetin- glucoronide; quercetin-3-sulfate	Reduces arterial thickness; reduces triglycerides; Antiatherogenic effect; Lipid lowering antioxidant	In- vitro	Male New Zealand Rabbits (aorta segment)	Barbozal et al., 2016
7.	AP	Crude hydro alcoholic dichlorometh ane, Ethyl Acetate & butanolic fraction	Triterpenoids, flavonoids; tannis	Vasodilation	In- vitro	Male wistar rats (thoracic aorta)	Schuldt et al., 2000
8.	AP	Ethanolic extract: Dichlorometh ane, Ethyl Acetate, butanolic fraction	Polyphenolic compounds; flavanoids	Antiherpes (action against HSV-1 strain Kos)	In- vitro	<i>Herpes</i> <i>simplex</i> virus type-1	Andrighett i et al., 2005
9.	Leaves	Aqueous	Steroids; triterpenes	Vasodilation	In- vitro	Lungs and Liver	Biavatti et al., 2004
10.	Leaves	Aqueous	Steroids; triterpenes	Reduction in cholesterolemia; Inhibits HMG-	In- vitro	Rats	Biavatti et a., 2004

				CoA reductase; Reduced plasma albumin			
11.	АР	Aqueous	Quercetin; glycosides	Anti-oxidant; No diuretic action	In- vivo	Male wistar rats	Lima et al., 2015
12.	АР	Aqueous	Not reported	Antinociceptive; Inhibition of TNF-α release	In- vivo	Mice	Campana et al., 2015
13.	АР	Aqueous	Not reported	Antimicrobial and anti- inflammatory	In- vitro	Staphylococcu s aureus and Salmonella choleraesuis	Cesar et al., 2008
14.	АР	Organic and Aqueous	Not reported	Trypanocidal activity	In- vitro	Epimastigote forms of <i>Trypanosoma</i> <i>cruzi</i>	Sülsen et al., 2006
		Aqueous	Not reported	Inhibition of ACE	In- vitro	Angiotensin I- converting (ACE) enzyme	Braga et al., 2000

Das et al., 2018: CUPHEA CARTHAGENENSIS: A REVIEW

[Legend: AP- Aerial parts]

CONCLUSION

Cuphea carthagenensis is one of the widely available weedy herbs. Its aerial parts have been used effectively in traditional medicine for antiviral activities, antimicrobial and anti-inflammatory activities, cardiovascular diseases, antinociceptive and also used in weight reduction. Some of the pharmacological reports also reveal its potential relating with available phytoconstituents viz. phenolic compounds, triterpenoids, flavanoids, tannis, lipids, unsaturated fatty acids and steroids. Despite of these facts, holistic exploration of Cuphea carthagenensis for their traditional potential is

not systematically validated. Therefore, this compilation may help in triggering the research community to involve substantially in the investigations using this potential weed to develop safe and cost effective therapeutic lead for the betterment of the mankind.

ACKNOWLEDGEMENT

Authors are grateful to Department of Pharmaceutical Sciences, Dibrugarh University for providing the platform and all the possible resources to carry out the work.

REFERENCES

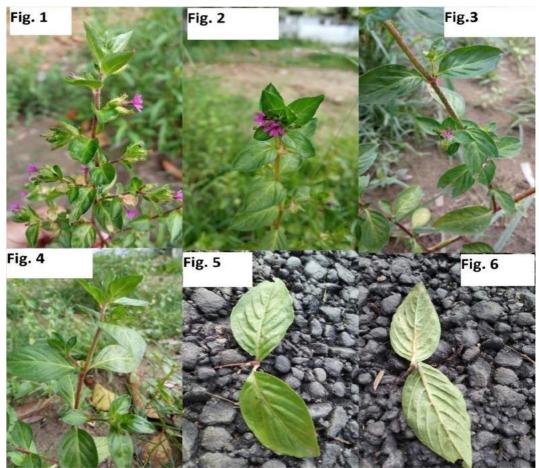
- Acevedo-Rodriguez, P., Strong, M.T., 2015. Flora of the West Indies. National Museum of Natural History Smithsonian Institution. Available: http://botany.si.edu/ antilles/westindies/ index.html (Accessed on 20.08.2018).
- Ahles, H.E., Bell, C.R., Radford, A.E., 1958. Species new to the flora of North or South Carolina. Rhodora. 709(60), 10-32.
- Andrighetti-Fröhner, C.R., Sincero, T.C., da Silva, A.C., et al., 2005. Antiviral evaluation of plants from Brazilian Atlantic tropical forest. Fitoterapia. 76(3), 374-378.
- Anonymous, 2015b. List of species of the Brazilian flora, Brazilian flora checklist. Brazilian Flora. Rio de Janeiro Botanical Garden. Available: Http://floradobrasil. jbrj.gov.br (Accessed on 15.05.2018).
- Anonymous, 2015a. Bishop Museum, Bishop Museum online natural sciences collections. Hawaii, USA. Available: http://nsdb.bishopmuseum.org (Accessed on 3.05.2018).
- Anonymous, 2015c. Chinese Academy of Sciences. Herbarium, Institute of Botany, Chinese Academy of Sciences. Available: http://pe.ibcas.ac.cn (Accessed on 17.04.2018).
- Anonymous, 2015d. Council of Heads of Australasian Herbaria. Australia's Virtual Herbarium. Australia. Council of Heads of Australasian Herbaria. Available: http:// avh.ala.org.au/#tab_simplersearch (Accessed on 18.04.2018).
- Anonymous, 2015e. Missouri Botanical Garden. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden. Available: http://www.tropicos. org (Accessed on 18.08.2018).

- Anonymous, 2015f. Pacific Island Ecosystems at Risk. Scientific name synonyms. A product of the Pacific Island Ecosystems at Risk project (PIER). Available: http://www.hear.org/pier (Accessed on 10.08.2018).
- Anonymous, 2015g. PIER, Pacific Islands Ecosystems at Risk. Honolulu, USA: HEAR, University of Hawaii. Available: http://www.hear.org/pier/index.html (Accessed on 7.08.2018)
- Anonymous, 2015h. Royal Botanic Gardens Kew. Kew Herbarium Catalogue. London, UK: Royal Botanic Gardens, Kew. Available: http://specimens.kew.org /herbarium (Accessed on 26.05.2018).
- Barboza, L.N., Lívero, F.A., Prando, T.B., et al., 2016. Atheroprotective effects of *Cuphea Carthagenesis* (Jacq.) J.F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. Journal of Ethnopharmacology. 187, 134-145.
- **Barroso, G.M., 1954.** Contribution to the genre of the study *Cuphea Adans* (Contribuicao ao estudo do genero *Cuphea Adans*). Rodriguesia. 16(29), 193-212.
- Biavatti, M.W., Farias. C., Curtius, F., et al., 2004. Preliminary studies on *Campomanesia xanthocarpa* (Berg) and *Cuphea carthagenensis* (Jacq.) J.F.Macbr. Aqueous extract: weight control and biochemical parameters. Journal of Ethnopharmacology. 93(2-3), 385-389
- Blanca, P.M.B., Mariela, P.M., Alma, R.L.L., et al., 2012. A propagation procedure for *Cuphea aequipetala* Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 11(5), 454-467.

- Braga, C.F., Wagner, H., Lombardi, J.A., de Oliveira, A.B., 2000. Screening the Brazilian flora for antihypertensive plant species for *in vitro* angiotensin-I-converting enzyme inhibiting activity. Phytomedicine. 7(3), 245-250.
- Calzada, F., Meckes, M., 2005. Additional antiprotozoal constituents from *Cuphea pinetorum*, a plant used in Mayan traditional medicine to treat diarrhoea. Phytotherapy Research. 19(8), 725-727
- Campana, P.R., Mansur, D.S., Gusman, G.S., Ferreira, D., Teixeira, M.M., Braga, F.C., 2015. Anti-TNF-α activity of Brazilian medicinal plants and compounds from *Ouratea semiserrata*. Phytotherapy Research. 29(10), 1509-1515.
- César, A., José, M.W., Rodrigo, D., Juliana, S.H., Gilsane L.P., 2008. Antimicrobial activity of plants used in the prevention and control of bovine mastitis in Southern Brazil. Latin American Journal of Pharmacy. 27(6), 894-899.
- Chong, K.Y., Tan, H.T., Corlett, R.T., 2009. A checklist of the total vascular plant flora of Singapore: Native, naturalised and cultivated species. Raffles Museum of Biodiversity Research, National University of Singapore.
- Coe, F.G., 2008. Rama midwifery in Eastern Nicaragua. Journal of Ethnopharmacology. 117(1), 136-157.
- **Correll, D.S., Correll, Helen. B., 1941.** A collection of plants from Louisiana. American Midland Naturalist. 26(1), 30-64.
- Crane, J.1, Kovach, D., Gardner, C., Walters, C., 2006. Triacylglycerol phase and 'intermediate' seed storage physiology: a study of *Cuphea*

carthagenensis. Planta. 223(5), 1081-1089.

- **Deberry, D.A., Perry, J.E., 2007.** Noteworthy collections: Virginia. Castanea. 72(2), 119-120.
- Dickel, M.L, Rates, S.M., Ritter, M.R., 2007. Plants popularly used for losing weight purposes in Porto Alegre, South Brazil. Journal of Ethnopharmacology. 109(1), 60-71.
- Downey, P.O., Scanlon, T.J., Hosking, J.R., 2010. Prioritizing weed species based on their threat and ability to impact on biodiversity: A case study from New South Wales. Plant Protection Quarterly. 25(3), 111-126.
- Elgindi, M., Ayoub, N., Milad, R., Mekky, R., 2012. Antioxidant and cytotoxic activities of *Cuphea hyssopifolia* Kunth (Lythraceae) cultivated in Egypt. Journal of Pharmacognosy and Phytochemistry. 1(4), 67-77.
- Franklin, J., Keppel. G., Whistler, W.A., 2008. The vegetation and flora of Lakeba, Nayau and Aiwa islands, central Lau Group, Fiji. Micronesica, 40(1-2), 169-225.
- Graham S.A., José, P.G.C., Murad, A.M., 2016. Patterns of fatty acid composition in seed oils of Cuphea, with new records from Brazil and Mexico. Industrial Crops and Products. 87, 379-391.
- Graham, S.A., 1975. Taxonomy of the Lythraceae in the southeastern United States. Sida. 6(2), 80-103.
- Graham, S.A., 1988. Revision of Cuphea section Heterodon (Lythraceae). Systematic Botany Monographs. 20, 1-168.
- Graham, S.A., 2003. Biogeographic patterns of Antillean Lythraceae. Systematic Botany. 28(2), 410-420.


- Heap, I., 2015. The international survey of herbicide resistant weeds. Avasilable: www.weedscience.org (Accessed on 20.05.2018).
- Hequet, V., Corre, Mle., Rigault, F., Blanfort, V., 2009. Invasive alien species in New Caledonia (Les especes exotiques de Nouvelle-Caledonie). envahissantes Institut de Recherche pour le Development. Available: http://www.hear.org/pier/locations/pacific /ecuador galapagos islands/santiago gro up/specieslist.html (Accessed on 18.04.2018).
- Hurst, G.A., 1978. Crop impactions in bobwhite quail in Louisiana. Journal of Wildlife Disease. 14(3), 355-357.
- **Kiew, R., 2008.** New weeds from Peninsular Malaysia. Flora Malesiana Bulletin. 14(3), 183-185.
- Krepsky, P.B., Farias, M.R., Côrtes, S.F., Braga, F.C., 2010. Quercetin-3-sulfate: A chemical marker for *Cuphea carthagenensis*. Biochemical Systematics and Ecology. 38(1), 125-127.
- Krepsky, P.B., Isidório, R.G., de Souza
 Filho, J.D., Côrtes, S.F., Braga, F.C.,
 2012. Chemical composition and vasodilatation induced by *Cuphea carthagenensis* preparations. Phytomedicine. 19(11), 9537.
- Prando, T.B., Lima Barboza, L.N., Gasparotto. F.M.. 2015. Ethnopharmacological investigation of the diuretic and hemodynamic properties of native species of the Brazilian biodiversity. Journal of Ethnopharmacology. 174(4), 369-378.
- Liogier, H.A., Martorell, L.F., 1982. Flora of Puerto Rico and Adjacent Islands: A Systematic Synopsis. Río Piedras, Puerto Rico: Editorial de la Universidad de Puerto Rico.

- Mann, H., 1866. Five Hundred and Seventy-First Meeting. Monthly Meeting; Enumeration of Hawaian Plants, pp. 135-235.
- Matuda, E., 1950. A contribution to our knowledge of the wild and cultivated flora of Chiapas. I. Districts Soconusco and Mariscal. American Midland Naturalist. 44, 513-616.
- Mckaughan, H.P., Macaraya, B.A., 1965. Maranao plant names. Oceanic Linguistics. 4(2), 48-112.
- Mito, T., Uesugi, T., 2004. Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environmental Research. 8(2), 171 193.
- Moustafa, E.S., Swilam, N.F., Ghanem, O.B., et al., 2018. A coumarin with an unusual structure from *Cuphea ignea*, its cytotoxicity and antioxidant activities. Pharmazie. 73(4), 241-243.
- Mullen, B.F., 2009. Forage Profile (Profil Pourrager), Vanuatu, Rome, Italy. United Nations Food and Agriculture Organization.
- Naithani, H.B., Bennet, S.S.R., 1990. Note on the occurrence of *Cuphea carthagenensis* from India. Indian Forester. 116(5), 423-424.
- Palacios-Espinosa, J.F., Arroyo-García, O., García-Valencia, G., et al., 2014. Evidence of the anti-*Helicobacter pylori*, gastroprotective and anti-inflammatory activities of *Cuphea aequipetala* infusion. Journal of Ethnopharmacology. 151(2), 990-998.
- Paul, T.K., Kumar, Anant., 2012. Two new plant records for West Bengal, India from Mahananda Wildlife Sanctuary, Darjeeling District. Pleione. 6(1), 244 -246.

- Pio, R.M., 1980. Invasive wetland plants in São Paulo. (Plantas invasoras de varzea no estado de Sao Paulo) Planta Daninha. 3(2), 85-95.
- **Preston, C., 2015.** The Australian glyphosate sustainability working group. Available: http://glyphosateresistance.org.au/index.ht ml (Accessed on 26.08.2018).
- Ramírez-Atehortúa , A.M., Morales-Agudelo, L., Osorio, E., Lara-Guzmán, O.J., 2018. The traditional medicinal plants *Cuphea calophylla*, *Tibouchina kingie* and *Pseudelephantopus spiralis* attenuate inflammatory and oxidative mediators. Evidence Based Complementary and Alternative Medicine. Article ID 1953726, pp. 1-11.
- Randhawa, G.J., Bhalla, S., Chalam, V.C., et al., 2006. Document on biology of rice (*Oryza sativa* L.) in India. National Bureau of Plant Genetic Resources, New Delhi, India, pp. 79.
- Robert, O.T., 1970. A review of pasture species in Fiji. I. Grasses. Tropical Grasslands, 4(2), 129-137.
- Schuldt, E.Z., Ckless, K., Simas, M.E., 2000. Butanolic fraction from *Cuphea carthagenensis* Jacq McBride relaxes rat thoracic aorta through endotheliumdependent and endothelium-independent mechanisms. Journal of Cardiovascular Pharmacology. 35(2), 234-239.
- Schuldt, E.Z., Farias, M.R., Ribeiro-do-Valle, R.M., Ckless, K., 2004. Comparative study of radical scavenger activities of crude extract and fractions from *Cuphea carthagenensis* leaves. Phytomedicine. 11(6), 523-529.
- Smith, A.C., 1985. Flora Vitiensis Nova: A new flora of Fiji. National Tropical Botanical Garden, Lawai, Kauai, Hawaii. 3, 758.

- Solfiyeni, S., Chairul, C., Muharrami, R., 2013. Analysis vegetation planting weed on maize (*Zea mays* L.) in dryland and wetland in Pasaman. Prosiding Semirata FMIPA Universitas Lampung, pp. 351-356.
- Space, J.C., Flynn, T., 2001. Technical Report. The Kingdom of Tonga on invasive plant species of environmental concern. USDA Forest Service, Pacific Southwest Research Station, Institute of Pacific Islands Forestry.
- Stefan, A., Hochkoeppler, A., Ugolini, L., Lazzeri, L., Conte, E., 2015. The expression of the *Cuphea palustris* thioesterase cpfatb2 in *Yarrowia lipolytica* triggers oleic acid accumulation. Biotechnology Progress. 32(1), 26-35.
- Sülsen, V., Güida, C., Coussio, J., Paveto, C., Muschietti, L., Martino, V., 2006. In vitro evaluation of trypanocidal activity in plants used in Argentine traditional medicine. Parasitology Research. 98, 370-374
- Sundell, E., Thomas, R.D., Amason, C., Stuckey, R.L, Logan, J., 1999. Noteworthy vascular plants from Arkansas. Sida. 18(3), 877-887.
- Uphof, J. C., 1959. The Dictionary of Economic Plants. Weinheim.
- Valenzuela, H.R., Hamasaki, R.T., Fukuda, S.K., 1994. Field cucumber production guidelines for Hawaii. Research extension series 151. Hawaii Institute of Tropical Agriculture and Human Resources. Available: http://www.ctahr.hawaii.edu/oc /freepubs/pdf/RES-151.pdf (Accessed on 19.08.2018).
- Welsh, S. L., 1998. Flora Societensis: "A summary revision of the flowering plants of the Society Islands". E. P. S. Inc., Orem, Utah. 221.

- Whistler ,W.A., 1998. A study of the rare plants of American Samoa. Report prepared for the US Fish and Wildlife Service, Honolulu, Hawaii, USA. 1(18), 1-125.
- Xu, H., Qiang, S., Genovesi, P., et al., 2012. An inventory of invasive alien species in China. Neobiota. 15, 1-26.
- Zago, A.M., Carvalho, F.B., Gutierres, J.M., et al., 2018. A phytochemical study of the *Cuphea glutinosa* from Southern Brazil: Na+, K+-ATPase activity inhibition and antioxidant properties. Natural Product Research. 21, 1-6.

Photo Plate

Cuphea carthagenensis- 1. Shoot; 2. Flower; 3. Branch; 4. Stem; 5. Leaf (ventral); 6. Leaf (dorsal)