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Perinteisesti suomalaisilla sellutehtailla on ollut tapana jalostaa sellunkeiton 

sivutuotteena syntyvä suopasaippua raakamäntyöljyksi, joka myydään mänty-

öljytislaajalle. Mäntyöljytislaamolla raakamäntyöljystä erotetaan ensin piki, ja 

loppu tislataan korkeamman arvon tuotteiksi. Mäntyöljypiki hyödynnetään 

lähinnä polttoaineena. Usein se rahdataan takaisin sellutehtaalle meesauunin 

polttoaineeksi. 

 

Tämän työn tarkoituksena oli tutkia mäntyöljypien erotuksen kannattavuutta 

sulfaattisellutehtaalla. Oletuksena oli, että energiaintensiivinen pikierotus 

voidaan tehdä tehokkaasti sellutehtaan lämmöntuotantoa hyödyntäen. Samalla 

tuotetaan sekä korkeamman arvon mäntyöljytuotetta, että uusiutuvaa poltto-

ainetta sellutehtaan meesauunille.  

 

Pien erotusprosessi mallinnettiin ja sen lämmönkulutus yhdistettiin koko tehtaan 

energiataseeseen. Konseptin taloudellista kannattavuutta arvioitiin laskemalla 

prosessille investointi- ja käyttökustannukset, sekä takaisinmaksuaika. Näitä 

tunnuslukuja verrattiin kilpaileviin meesauunin polttoaineen tuotanto-

menetelmiin: raskaaseen polttoöljyyn, kuoren kaasutukseen sekä kaasutuksen ja 

pienerotuksen yhdistelmään.  

 

Sellutehtaan mäntyöljypien erotus todettiin soveltamiskelpoiseksi prosessiksi,

jolla on lyhyt takaisinmaksuaika. Suurin tekninen haaste prosessissa on se, ettei

sillä pysty tuottamaan kaikkea meesauunin tarvitsemaa polttoainetta.

Tulevaisuudessa pienerotusta voitaisiin optimoida kasvisterolien erotukseen sekä

erilaisten jakeiden tuotantoon markkinahintojen vaihtelun mukaan.

Avainsanat  Mäntyöljypiki, pien erotus, uusiutuvat polttoaineet
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1 Introduction 

 
Several global megatrends, such as increased environmental awareness and resource 

efficiency are driving the traditional pulp industry towards biorefinery concepts. These 

concepts have two main principles which are also economically motivated: the 

elimination of fossil fuels usage during operation and new value added side products for 

pulp. Most of the interests are directed towards lignin and hemicellulose, but this thesis 

focuses on the third side stream: the extractives. 

The recovery of extractives from pulp production is not a new idea. On the contrary,

crude tall oil can be considered as the first remarkable side product of kraft pulp

production, which recovery began already in the beginning of the 20th century. There 

is already an existing refining chain and markets for the products derived from it. 

The maturity of this segment has decreased the interest towards the development of 

tall oil processes in pulp mills.

However, the growth of production in pulp mills is offering larger quantities of crude tall 

oil and further growth to its production can be achieved through process optimisation. 

Simultaneously, the other principle of biorefineries is still mainly unreached: A majority 

of lime kilns in the pulp industry is still fuelled with fossil fuels such as natural gas or 

heavy fuel oil. On the tall oil refining sector, the production of biofuels has become a 

competing crude tall oil user to traditional distillation, and interests towards 

phytosterols refining for medical applications are growing. All these factors are opening 

new possibilities for a more efficient production of tall oil products. 

In this thesis, possibilities to increase the efficiency of the tall oil refining chain are 

investigated from the pulp mill point of view. In the Literature Review, the processes 

and chemistry of tall oil refining are introduced. The market situation and potential new 

applications are also briefly viewed. In the Experimental Study, a concept study to 

further refine crude tall oil in a kraft pulp mill is made and its feasibility is defined 

through a mill balance comparison between competing scenarios. The process studied in 

the experimental part is depitching, which creates more valuable crude tall oil product 

and helps pulp mills to reach carbon neutral production. 
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LITERATURE REVIEW 

 

2 Tall oil 

  
Tall oil is the group of mostly lipophilic, non-volatile extractives (Figure 1) of wood that 

are separated from spent sulphate cooking liquors. It is considered as the most 

important side product of the kraft pulping process in softwood and mixed wood pulp 

mills (Isotalo, 1996). After refining and fractionation, tall oil offers several base 

chemicals for the process industry. 

 
 

Figure 1. Tall oil as a fraction of wood extractives. 

 
In the Literature Review, the refining of tall oil is first introduced, followed by the 

characterisation of the end products and their applications. After these, the chemistry of 

tall oil fractions is further presented. The Literature Review concludes by analysing 

current trends and future possibilities for tall oil utilisation in more detail. 

 

2.1 Tall oil refining 

 
In this section, the refining and fractionation processes of tall oil are introduced. The 

thesis focuses on the process chain relevant to the tall oil industry, which begins from 

soap separation in the evaporation plant and ends in tall oil fractional distillation. This 

Turpentine (volatile) 

Hydrophilic 

Lipophilic 

Wood extractives Tall oil (non-volatile) 
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selection is justified as the earlier wood-handling and cooking processes are optimised 

for and driven mainly by pulp production, and the further refining of tall oil fractionation 

products is not selective to only tall oil -based feedstock. 

 

2.1.1  Soap separation from black liquor 

 
During kraft cooking, acidic lipophilic extractives of wood chips are saponified with the 

sodium hydroxide in the white liquor to form organic sodium salts, as shown in Figure 2. 

These compounds with hydrophobic and hydrophilic ends tend to form soap micelles 

when a critical concentration of these particles is achieved, in other words during black 

liquor evaporation. Both fatty and resin acid salts are needed in order to form micelles 

(Laxén & Tikka, 2008). When given time to settle, they form a separate phase on the 

surface of the black liquor, which can be separated with overflow decantation or by 

skimming with a scraper.   

Even though all lipophilic components are not capable of forming soap, they may be 

incorporated into the micelles, which explains the unsaponifiable content of tall oil 

(Ödberg et al, 1985). During skimming, black liquor, pulp fibres, lignin and small amount 

of inorganics, such as calcium compounds, are also retained alongside the soap. 

Important parameters in soap separation are the fatty acid and rosin acid ratio in soap, 

ionic strength (residual effective alkali), temperature and the dry matter content of the 

black liquor, and the turbidity and superficial flow in the soap skimming tanks (Foran, 

1983; Ström et al, 1990). The optimal dry matter content of black liquor for soap 

separation is 28–32 w-%. However, evaporator plants are constructed in such a way that 

soap is usually skimmed from feed liquor and intermediate black liquor tanks, where the 

dry matter content is 18–21 and 30–35% (Laxén & Tikka, 2008). 

 

 

Figure 2. Saponification reaction. 
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After separation from black liquor, the crude sulphate soap (CSS) is stored in a soap 

tank. Black liquor tends to further separate from soap during storing, and its removal 

from the bottom of the tank is beneficial for the quality of the soap (Laxén & Tikka, 

2008).  

 

2.1.2  Acidulation of soap 

 
In acidulation, resin and fatty acids are liberated from CSS with the help of acid, which 

can be sodium bisulphite, sulphuric acid, spent acid from chlorine dioxide production, or 

a combination of these and carbon dioxide (Johnson & Potier, 1997; Laxén & Tikka, 

2008). Acidulation reaction is presented in Figure 3. 

 

 

Figure 3. Acidulation of soap.  

 
During acidulation, spent acid, also called brine, lignin and solid gypsum (calcium 

sulphate formed between acid and calcium compounds) form separate phases from 

crude tall oil, as shown in Figure 4. Even though phase separation provides an easy way 

to remove most of the unwanted soap fractions, especially the lignin layer tends to slow 

down the settling and capture some of the crude tall oil (CTO). 

A favourable acidulation reaction temperature is around 98 °C (Foran, 2017). It is 

beneficial to wash the soap with water before acidulation to lower the residual black 

liquor concentration and to dissolve impurities from soap. Black liquor and impurities 

removal reduces acid consumption, improves the quality of the end products and 

protects the acid content of the soap from esterification reactions catalysed by strong 

acid (Johansson, 1983). The esterification is further discussed in section 2.1.3. 
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Figure 4. Phase separation of acidulated tall oil soap, as presented by Foran (2017). 

 
There are several decantation and centrifugation processes used to perform soap 

acidulation. Traditionally, this acidulation is operated as a batch process, presented in 

Figure 5. In the most traditional batch systems, hot water is pumped to a reactor 

followed by sulphuric acid. This mixture is further heated with steam to a final reaction 

temperature. Crude sulphate soap is added and thoroughly mixed into the solution, and 

the mix is allowed to react and settle for about 2–3 hours.  More acid may be added 

during reaction to adjust the pH. After settling, the oil phase is separated into a wet oil 

tank, where it is let to further settle to remove residual brine. Spent acid and solids may 

be removed from the reactor or left there for following runs, until sequential clean up. 

In traditional batch systems, lignin precipitates between the oil and spent acid layer, 

weakening the phase separation. To avoid this, they may be upgraded to semi-batch 

systems by performing phase separation in a shaker-decanter combination. With this 

setting, the size of the acidulation reactor may also be significantly reduced (Drew & 

Propst, 1981). 
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Hot water

Sulphuric acid
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Tall oil soap

(White liquor 
for washing)
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CTO
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Spent acid

Acidulation 
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Figure 5. Batch process for soap acidulation, adapted from Drew and Propst (1981). 

 
Hydro Dynamic Separation (HDS), presented in Figure 6, is an example of a continuous 

decantation process. Soap, acid and water are mixed in-line and fed to a reaction zone 

of a decanter cone. To avoid the formation of harmful lignin layer, brine is circulated 

between middle and bottom part of the decanter, and part of the lignin is separated 

through an inner cone. Colloidal particle removal is further enhanced by lamella sets in 

the upper section of the decanter. CTO is removed from the decanter through an 

overflow (Lindqvist, 1983).  

 

Tall Oil Soap

NaOH

Relief 
Odorous 

Gas

Neutralised 
Mother Liquor

Sulphuric AcidWarm WaterSteam

Crude 
Tall Oil

 

Figure 6. Simplified Hydro Dynamic Separation (HDS) process for soap acidulation, 

adapted from Laxén & Tikka (2008). 
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Other option for continuous soap acidulation is to use centrifugation, as shown in Figure 

7. Centrifuge rotor exerts a large force to acidulation mixture, enabling fast phase 

separation and slightly higher yields than other conventional methods (Foran, 2017). 

However, compared to decantation and batch acidulation, centrifugation equipment 

needs more mechanical maintenance and is more sensitive to the specific gravity 

variation of feed fractions. To avoid plugging by solids, lignin can be pre-extracted with a 

solid bowl centrifuge. The final separation is usually done with a conical plate centrifuge, 

as shown in Figure 7 (Head Engineering AB, 2011). 

 

Crude Tall Oil
Tall Oil Soap

NaOH Relief 
Odorous 

Gas

Neutralised 
Mother Liquor

Drying 
Unit

Sulphuric AcidWarm WaterSteam

Centrifuges
 

Figure 7. Simplified Pinola TOPP process as an example of centrifugal soap acidulation, 

adapted from Head Engineering AB (2011). 

 
After acidulation, CTO is vacuum-dried and pumped into a heated storage tank to wait 

for transportation to a distillation site. During storage, residual solids may sediment 

onto the bottom of the tank. This sediment is often removed and burned in a recovery 

boiler on a pulp mill. 

 

2.1.3  Drying and depitching 

 
Before entering distillation process, CTO has been affected by storing and transfer that 

alter its initial composition. Considering the quality, the most important reaction 

happening is the esterification of acids with alcohols, forming esters and water, as 

presented in Figure 8. Esters lower the yield of desired free acids, while water 
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deteriorates the energy efficiency of distillation. CTO may be additionally dried to 

increase the stability of vacuum distillation. 

 

 

Figure 8. Exemplary esterification reaction between a fatty acid and methanol. 

 
Aim of the depitching is to separate desired acid components from unwanted neutrals 

through vaporisation. Remaining non-volatile liquid, the tall oil pitch (TOP), is retained 

from the process. Evaporated components may be fed directly to distillation columns. As 

all the desired end products are vaporised, process conditions in depitching are rough: 

Process is operated in vacuum at absolute pressures below 1 kPa and at temperatures 

up to 270 °C (Huibers, 2000; Norlin, 2012). Lower pressures can be used to lower the 

operating temperature. Depitching is done with two different systems. The more 

traditional one is to separate TOP in a stripper column by heating tall oil with direct 

superheated steam. Steam and volatilised matter is directed onwards to the rosin 

distillation from the top of the column. Depitching stripper is presented in Figure 11 in 

section 2.1.4.  

Another depitching method closely related to the dry distillation method is to use thin 

film evaporators. They spread tall oil over a heat exchange surface with rotating blades. 

The volatile matter is vaporised from the heat exchange surfaces. Thin film evaporator 

as depitcher is presented in Figure 10 in section 2.1.4. Short residence time is mentioned 

to be the advantage of the thin film evaporation strategy, whereas good heat transfer is 

the advantage of the distillation stripper. Drawbacks are the large overall energy 

consumption and effluent generation of the stripper. The weakness of thin film 

evaporator is the higher need of mechanical maintenance (Bress, 1982; Freese & Vock, 

1982). 
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2.1.4  Distillation 

 
Distillation is the final tall oil fractionation process, in which depitched tall oil is divided 

into commercial end products: tall oil rosin (TOR), tall oil fatty acids (TOFA) and distilled 

tall oil (DTO). In the process, also the most volatile neutrals and fatty acids are separated 

as a stream of their own, called tall light oil (TLO) or heads. Product streams are 

presented in Figure 9. Due to high boiling points of the components, distillation is 

operated in vacuum and at operating temperatures over 200 °C (Norlin, 2012). 

Regardless of the distillation method, modern distillation system consists of three 

distillation columns: a rosin column, a heads column and a fatty acid column. 

 

 

Figure 9. Product fractions of crude tall oil and their abbreviations. 

 
There are two dominant tall oil distillation methods: dry distillation and steam 

distillation. Dry distillation (presented in Figure 10) is mainly developed and mostly used 

in Europe, and it is the major method for new plants (Norlin, 2012). According to its 

name, it does not use entraining media to aid the distillation. Due to this, the process is 

sensitive to pressure losses inside the columns. Thus, structured packing is a sole option 

for column internals.  Reboilers are either thin film or falling film evaporators. Upsides of 

the process are low holdup, fast retention time and easier handling of steam 

condensates (Norlin, 2012). 

 

Tall oil rosin (TOR)
Tall oil fatty acids (TOFA)

Depitched crude tall oil ~(DCTO) Distilled tall oil (DTO)
Crude tall oil (CTO) Tall light oil (TLO)

Tall oil pitch (TOP)

glr575
Stamp
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Figure 10. Dry distillation of crude tall oil, edited from Freese & Vock (1982) and 

Vainiomäki (1995). 

 
Steam distillation, also referred as wet distillation in contrast to dry distillation, has been 

adapted from petroleum refining and developed for tall oil distillation originally in the 

United States. Traditional wet distillation uses direct superheated steam heating and 

bubble-cap tray internals (Norlin, 2012). The steam acts also as an entrainer media to 

upkeep pressure stability in the column. The use of liquid trays in distillation increases 

the holdup volume of the columns, and exposes the tall oil to detrimental thermal 

reactions. In modern wet distillation systems, structured packings can also be used 

(Bress, 1982). Other issues with wet distillation are large energy demand and the 

handling of contaminated steam (Hermann & Kuratle, 1983; Norlin, 2012). Wet 

distillation is presented in Figure 11. 
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Figure 11. Steam distillation, also called wet distillation of crude tall oil, adapted from 

(Bress, 1982). 

 
The exact yield of different fractions varies geographically, but roughly 30% of CTO can 

be fractionated into TOR and TOFA each, around 30% to TOP and TLO, and the rest to 

DTO. In America, the TOR and TOFA share can be higher (Drew & Propst, 1981). 

 

3 Tall oil end products and markets 

 
This chapter aims to give the reader a general understanding of the CTO markets, and 

the end use of its fractions: Prices and volumes are given when available. The discussion 

of future potential of the tall oil industry can be found in Chapter 5. 

 

3.1 Crude tall oil (CTO) 

 
The production of CTO is estimated to be 1.6–2 million tonnes by several sources 

presented by Peters and Stojcheva (2017). Of this, around 50% is produced in USA and 
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30% in Scandinavia (Holmbom, 2011; Peters & Stojcheva, 2017).  Major part of it is used 

by tall oil distillers. However, part of it is also burned for energy on pulp mill site, where 

it can be used to substitute fuel oil. Because of the similar energy content, CTO market 

price is correlating with the heavy fuel oil (HFO) price, as can be seen in Figure 12. 

Fractionation through distillation creates significant added value to CTO. During the last 

years, market prices for distillation products have also increased faster than the price of 

CTO, as can be noted from the Figure 13. 

 

 

Figure 12. Historical market prices of crude tall oil (CTO), pitch (TOP) and heavy fuel oil 

(HFO), adapted from Eurostat (2018). 

0

200

400

600

2002 2005 2008 2011 2014 2017

EUR/ton 

CTO

TOP

HFO



13 
 

 

Figure 13. Market prices of tall oil fractions, adapted from Eurostat (2018). 

 

3.2 Tall oil rosin (TOR) 

 
Tall oil rosin is a significant paper size source, but lately the demand of this application 

has decreased due to cheaper sizing materials and the general downfall of graphical 

paper production. Nowadays, the most important end uses of tall oil rosin are adhesives 

and printing inks alongside paper sizing (Poikolainen, 2018). Rosin is also used as a 

rubber emulsifier (Huibers, 2000; Turner, 2010). One of the most important 

characteristics of rosin and simultaneously the most important price factor is its colour. 

The best colour grade rosin has a three times higher market value than the lower grades 

(Holmbom, 2011). 

The global rosin markets are estimated to be around 2.5 million tons, of which 25%, 

500 000 tonnes is originating from tall oil (Poikolainen, 2018).  

 

3.3 Tall oil fatty acids (TOFA) 

 
TOFA competes in a larger market of carboxylic acids against other vegetable oils such as 

soy and rapeseed oils. Favourable aspect for TOFA in this competition is that it is not 
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competing of farmland against food production. General end use applications for fatty 

acids are as alkyd resins for paints and as polyamides for adhesives, inks and epoxies 

(Alalauri, 1995; Huibers, 2000). Rapidly increasing end use is also biofuels, where fatty 

acids may be utilised as fatty acid methyl esters (FAME), or as a hydrotreated vegetable 

oil (HVO) to renewable biodiesel. The global fatty acid market size is around 10 million 

tonnes, of which 5% is from tall oil (Poikolainen, 2018). 

 

3.4 Distilled tall oil (DTO) 

 
DTO is described as “a unique mixture of rosin and fatty acids” (Huibers, 2000), with 

approximately 40% resin and 60% fatty acid content. DTO can be used in soaps and 

coating applications, as well as in the glue and paint production. For analytical 

applications, pimaric and isopimaric acids can be crystallised from DTO (Norlin, 2012; 

Riistama, et al, 2003; Soltes & Zinkel, 1989). 

 

3.5 Tall light oil (TLO)  

 
TLO consists mainly of neutrals and short-chain fatty acids. It is often considered as a 

waste fraction alongside pitch (Alalauri, 1995). However, it has interesting solvent 

properties, and relatively pure palmitic acid could be recovered from it via crystallisation 

(Huibers, 2000). Still, due to its bad odour it is often incinerated on the distillation site 

(M. Rintola, personal communication, 16 February 2018; T. Silfverberg, personal 

communication, 21 March 2018).  

 

3.6 Tall oil pitch (TOP) 

 
TOP has been normally used for energy production and is often sold back to a pulp mill 

to be used as a lime kiln fuel (M. Rintola, personal communication, 16 February 2018; T. 

Silfverberg, personal communication, 21 March 2018). This can be seen in the market 

price of TOP (in Figure 12), which is dependent on HFO price, similarly like CTO. 
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However, some refined applications for it have been developed. Upgraded TOP can be 

used in glues and in printing inks, as well as an asphalt emulsifier (Norlin, 2012; Riistama, 

et al., 2003). In the EU Renewable energy directive, TOP is double accountable for the 

renewable fuel target (European Parliament, 2015). Despite this, Renewable Fuel 

Standard (RFS) in USA does not recognise TOP or any other tall oil product as a valid 

renewable fuel feedstock (United States Environmental Protection Agency, 2017). 

 

4 Tall oil chemistry 

 
In this Chapter, a closer look into the chemical nature of tall oil components is taken to 

fully understand the behaviour of them during refining. The components are divided 

into chemically more accurate subcategories, slightly differing from product fractions: 

Resin acids, Fatty acids and Neutrals. Relation of the compounds and product fractions 

are given at the end of this Chapter, in Table 2. 

Majority of tall oil consists of tri- or higher terpenes and their derivatives, in other words 

compounds consisting of six or more isoprene units. Lower terpenoids are usually 

vaporised during the pulp cooking process as turpentine, but some traces of them can 

also be found in tall oil (Sjöström, 1993). Another significant part of tall oil is fatty acids. 

These two classes are accompanied by some minor and miscellaneous neutral 

components. 

 

4.1 Resin acids 

 
Wood resin acids have two major skeletal structures: abietane and pimarane types. In 

America, also labdane types are found in some wood species: Communic acid from slash 

pine and lambertianic acid from sugar pine (Ekman & Holmbom, 2000; Sjöström, 1993). 

These structures alongside related atom numbering are presented in Figure 14 below. 
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Figure 14. Wood resin acid skeletal structures with atom numbering. 

Due to their similarity, it is not necessary to separate different types of resin acids in 

most applications: They are most often treated just as rosin. However, they differ from 

each other by their dehydrogenation products: Abietane type produces retene, while 

pimarane type yield pimarathene (Soltes & Zinkel, 1989). The carboxylic group of resin 

acids at C18 is sterically hindered, which is why they are more resistant against the 

esterification reaction than fatty acids (Pensar, 1977). 

 
Resin acids with pimarane basic structure (Figure 15) are tricyclic diterpenes with one 

double bond inside the rings and one in the ethylene group linked to a C13 carbon. Most 

usual components of this type are pimaric and isopimaric acids. These differ from each 

other mostly by the location of the double bond. Also Sandaracopimaric acid (CAS 471-

74-9), a stereoisomer of pimaric acid in regard to ethylene bonding to C13, belongs to 

this group and is often found from tall oil in small concentrations (Holmbom & Avela, 

1971). Study by Lawrence (1959) showed that abietane type resin acids concentrate into 

the rosin fraction during tall oil distillation, indicating that pimarane type resin acids are 

more vulnerable to polymerisation reactions and are partly removed alongside pitch. 

They are found to be harmful to aquatic life (Leach & Thakore, 1978; Rogers, et al., 

1975). 

 

Abietane Pimarane Labdane 
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Figure 15. Pimarane type resin acids with their IUPAC names and CAS numbers.  

 
Resin acids with abietane skeleton have two double bonds inside the tricyclic structure 

and a saturated isopropyl group bound on the C13. Most common component in this 

group is abietic acid, sometimes also called sylvic acid, that is yellowish powder in room 

temperature (Nikunen, et al., 1990). Others significant components of this group are 

levopimaric, palustric, dehydroabietic and neoabietic acids. Dehydroabietic acid is the 

only component to have an aromatic ring, while neoabietic acid’s another double bond 

is between the isopropyl and the C13 carbon. Due to their conjugated structure, all 

abietane type resin acids, except dehydroabietic acid, are easily isomerised and oxidised 

compared to pimarane-structured acids (Sjöström, 1993). Especially levopimaric acid has 

been noted to isomerise into abietic acid and further into palustric and neoabietic acids 

in elevated temperatures (Holmbom & Ekman, 1978; Walter, et al., 1989).  Abietic, 

dehydroabietic and palustric acid have been found to be harmful to aquatic life (Leach & 

Takore, 1976; Leach & Thakore, 1978; Oikari, 1987). These resin acids are presented in 

Figure 16. 
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Figure 16. Abietan type resin acids with their IUPAC names and CAS numbers. 

 
Labdane type resin acids (Figure 17) differ significantly from the other two main types as 

they are bicyclic, usually three double bonds containing compounds. They are usually 

specific to some American pine species, in which they can be present in high 

concentrations. Communic, also known as elliotic acid can be found from slash pine 

(Pinus elliottii), whereas lambertianic acid is abundantly available in sugar pine (Pinus 

lambertiana). Structurally also secodehydroabietic acid, aromatic isomerisation product 

of levopimaric acid formed during kraft pulping, is close to this group (Sjöström, 1993). 
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Figure 17. Labdane resin acids and secodehydroabietic acid. 

 

4.2 Fatty acids  

 
Fatty acids present in tall oil originate from fatty compounds, mostly triglycerides of 

wood that are degraded during pulp cooking. These straight, long-chain acids are 

present in wood in saturated and unsaturated forms. Their occurrence is strongly 

dependent of the wood species and geographical location: Triunsaturated fatty acids are 

more common in Scandinavia region than in America, whereas birch and spruce species 

are more abundant of saturated forms than pines (Duncan, 1989; Holmbom & Avela, 

1971; Holmbom & Ekman, 1978). According to Rydholm (1965), fatty acids are 

contributing to pitch deposits in pulping and papermaking, which is why their removal 

along the tall oil is beneficial to the paper quality. Fatty acids are quite easily esterified 

with alcohols from the unsaponifiable fraction in elevated temperatures. Esterification is 

an equilibrium reaction: The absence of water, the other esterification end product, 

speeds up the otherwise relatively slow reaction. It is also noteworthy that free fatty 

acids are highly corrosive. 

Of the saturated fatty acids (Table 1), palmitic acid is the most common. Stearic acid is 

also universally found from trees, but in lesser concentrations.  Other components, such 

as arachidic and behenic acids, have been found from Finnish birches (Betula verrucosa 

and Betula pubescens) (Holmbom & Avela, 1971). Both palmitic and stearic acid in 

effluents are found to be harmful to fish (Nikunen, et al., 1990). The shortest saturated 

fatty acids have low boiling points and they partly end up in the rejected light oil fraction 

during distillation. 
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Table 1. Most common saturated fatty acids in wood. 

 

 
Of the unsaturated fatty acids (in Figure 18), oleic and linoleic acids are the two most 

significant ones. As mentioned before, triunsaturated acids are more uncommon, and 

during kraft cooking and tall oil refining they are vulnerable to thermally catalysed 

destructive reactions. The double bonds tend to isomerise into conjugated locations, 

which may further isomerise from cis- to trans-orientation. This isomeric form exposes 

them to destructive reactions such as cyclisation. Especially pinolenic acid is known to 

convert almost completely into cyclopinoleic acid via Diels–Alder reaction in tall oil 

distillation, causing yield loss (Hase, et al., 1974; Holmbom & Eckerman, 1983). Fatty 

acids’ trans-isomers have also higher melting and boiling points than their cis-isomers, 

causing handling difficulties (Duncan, 1989). 
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Figure 18. Unsaturated fatty acids present in tall oil. 

 

4.3 Neutrals 

 
Neutrals is a “residual” group of chemical components in tall oil. Terms neutrals, 

unsaponifiables and pitch are closely related but their differences are presented through 

classification in Figure 19. The term neutrals refers to tall oil’s non-acidic contents of 

alcohols, aldehydes, esters, hydrocarbons and phytosterols. The name unsaponifiables 

refers to chemicals lacking the ability to form soaps, especially during tall oil separation 

from black liquor. The pitch is the leftover fraction of distillation, consisting of high-

boiling neutrals and also some leftover fatty and resin acids. It is noteworthy that 

besides pitch, a significant amount of neutrals are rectified also in the heads (Holmbom, 

1978).   

 

 

Figure 19. The classification of tall oil pitch components. 

glr575
Stamp
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Phytosterols (Figure 20) are plant sterols and stanols (saturated sterols). In living wood 

they are concentrated on the heartwood (Saranpää & Nyberg, 1987), while on tall oil 

processing they are rectified into the TOP. They are significantly more abundant in tall 

oil than in other vegetable oils (Holmbom & Avela, 1971; Belitz, et al., 2004). β-

Sitosterol, and its saturated version, β-sitostanol are the most commonly acquainted 

phytosterols  (Vikström, et al., 2005; Wong, 2001). Campesterol and the saturated 

version of it, campestanol are also quite universally found from tall oils in small 

concentrations. Their biosynthesis intermediates, cycloartenol and lupeol can be found 

in negligible amounts, mostly from birch, spruce and larch (Vikström, et al, 2005).  

 

 

Figure 20. Most common phytosterols.  

 
Neutral components unique to birch may end up in the crude tall oil through mixed 

wood pulping. In paper production, they are causing significant pitch problems, which is 

why at some hardwood pulp mills rosin soap is bought to remove them from pulp.  Most 

important birch components are betulinol and betulaprenols. Betulinol is a dihydric 

alcohol and its removal from pulp is very difficult. At paper machine, it can cause tacky 

deposits and hinder its runnability. Betulinol can be present in tall oil as a free or as an 

esterified version, for example as a methyl betulinate. Betulaprenols are straight long-

chain alcohols. Also squalene, precursor for triterpenoid biosynthesis, is available in 
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birch extractives in significant quantities. Commercially, it is most commonly extracted 

from a shark liver and is often used in cosmetics as an antioxidant and a moisturiser 

(Lövberg, 1983; Wolosik, et al, 2013). These compounds are presented in Figure 21. 

 

 

Figure 21. Unsaponifiable components typical to birch. 

 
Also other wood species have some unique, although not as important pitch 

components as birch. Thunbergol is a diterpenic alcohol specific to spruces (Picea). In 

living wood it is mostly present as a free alcohol in heartwood (Ekman, 1979; Sjöström, 

1993). Pinosylvin is a pine-specific dihydric alcohol and a stilbenoid component that is 

usually present in tall oil in its ester form pinosylvin dimethyl ether. This ether has 

shown fungicide and pesticide properties, and also its tendency to colourize fatty acid 

epoxies red has raised interests towards its separation from tall oil (Conner, 1989). The 

structures of these compounds are presented in Figure 22. 
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Figure 22. Some unsaponifiables of specific wood species.  

 
In addition to compounds introduced above, the unsaponifiable fraction contains a 

variably large amount of alcohols, aldehydes and hydrocarbons with resin and fatty acid 

skeletal structures (Conner & Rowe, 1975). These are probably remains and side 

products of the biosynthesis of the acids. The esters of methanol and alcohols 

mentioned before, and fatty acids are also present. In TOP, some free acids are present, 

but these can be considered as impurities that separation processes have not been able 

to selectively remove alongside their product stream (Holmbom & Erä, 1978). 
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Table 2. Occurrence of tall oil components in distillation products, adapted from 

Holmbom (1978).  

  TOR TOFA DTO TOP TLO       

Resin acids       

Secodehydroabietic - -             

Pimaric   -   - -       

Isopimaric   -   -         

Sandaracopimaric     -           

Palustric   -   -         

Abietic   -             

Neoabietic     - -         

Dehydroabietic   -   -         

Fatty acids       

Palmitic   -             

Pinolenic               > 10 w-% 

Linoleic -     -       1-10 w-% 

Oleic -     -     - <  1  w-% 

Stearic     -   -       

Eicosatrienoic - -             

Arachidic - -             

Behenic     -           

  - As esters       

Palmitic       -         

Pinolenic       -         

Linoleic -   -   -       

Oleic     -   -       

Stearic       -         

Eicosatrienoic -   - -         

Arachidic -   - -         

Behenic -     -         

Neutrals       

Pimaradiene         -       

Pimaral   -             

Isopimaral   -             

Pinosylvin dimethyl ether   -             

Dehydroabietal   -     -       

Abietal   -             

Squalene -               

3.5-stigmastadiene -     -         

β-sitosterol       -         

  - As esters       

Dehydroabietic methyl ester   -     -       

Abietic methyl ester   -     -       

Pimarol       -         

Behenol       -         

Tetracosanol       -         

β-sitostearate                 
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5 Future outlook and potential end products 

 
It is calculated that current CTO production potential is 2.1–2.6 million tonnes, of which 

1.6–2 million tonnes is already retained (Baumassy, 2016; Peters & Stojcheva, 2017; 

Poikolainen, 2018). Thus, there is a theoretical chance to increase CTO production by 

around 600 000 tonnes. However, this might not be reached due to losses caused by 

mixed wood pulping. If the hardwood content in pulp mill feed exceeds 50%, the yield of 

tall oil is weakened due to the poor soap formation. Depending on heavy fuel oil price 

fluctuations, it may also be attractive to burn CSS or CTO on site instead of recovery.  

Except for direct combustion, interest towards tall oil energy usage as refined biofuels 

has been increased by the renewable energy targets set by the European Union, and the 

mitigation principle of the UN Paris Agreement (United Nations, 2015). Also, in the 

proposal for the new EU renewable energy directive, tall oil is added as valid feedstock 

for advanced biofuels alongside TOP (European Comission, 2017). For example, there 

has been recently several master’s theses related to biofuel production from tall oil in 

Aalto University (Lehtinen, 2011; Pohjantähti, 2012; Puustinen, 2015; Rautalin, 2009). 

Despite motivations to produce biofuels from CTO, the pine-derived chemicals are 

maintaining their competitiveness. It is estimated that the profitability of conventional 

chemical refining equals that of the biofuel production with current policies 

(Poikolainen, 2018). Pine chemicals markets are growing 4–5% annually, driven mostly 

by adhesives and coating applications (Baumassy, 2016).  

Another interesting way to utilise CTO is the extraction of phytosterols from its neutrals. 

They are valuable feedstock for the cosmetics and pharmaceutical industry (Lövberg, 

1983). Sterol extraction has been commercialised already in the 1970s in the Kaukas 

chemical mill in Finland via CSR-process developed by Holmbom and Avela (US patent 

US3965085A, 1976). Later on, the production has been terminated, but new competitive 

methods for sterol separation are studied, especially using TOP as a feedstock (US 

patent US8680324 B2, 2014; EP patent WO2017137908, 2017). According to Ukkonen 

(2016), the sterol market for pharmaceutical applications is growing 8–10% annually.  
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EXPERIMENTAL STUDY 

 

6 Scope 

 
As can be concluded from the Literature Review, the TOFA and TOR fractions of tall oil 

are already well utilised and efficiently used by the chemical industry. The greatest 

improvement potential is for the “leftover” fractions of TOP and TLO.  Of these, the pitch 

fraction is more interesting due to its larger production volume, which is around 20–30% 

of CTO, roughly double the amount of the TLO fraction. The most value added use for 

this could be phytosterols separation. However, this growing market is still very limited, 

and the current depitching conditions may lower the sterol yield (K. Ukkonen, personal 

communication, 9 April 2018).  

 

From the perspective of pulp mills, the prospects for the tall oil business have been poor 

in recent years, which can be noted from the CTO market price development in Chapter 

3 of the Literature Review. This could be changed by further refining tall oil in a pulp mill 

by performing depitching already onsite. The process could use the relatively cheap and 

abundant process energy provided by the recovery and biomass boilers of the pulp mill. 

Additionally, the extracted pitch can be used as a lime kiln fuel, replacing natural gas or 

heavy fuel oil. This helps the pulp mill to reach carbon neutral operation. Pitch is already 

burned in lime kilns after depitching in a distillation site and transportation back to the 

pulp mill. With onsite depitching, savings in logistics costs could also be made.  In the 

future, when the sterol market has gained sustainable market size, the process could 

also be modified to produce valuable sterol-rich pitch for the pharmaceutical industry. 

 

The hypothesis in this work is that the tall oil refining chain could be made more 

efficient by integrating the depitching process into pulp mills. In this Experimental Study, 

the technical and economic feasibility of this concept is tested by defining the depitching 

process, calculating its effect to pulp mill mass and energy balances and defining 

investment cost for the process. These are then used to calculate profitability and the 

payback period for the investment. These key figures are then compared between TOP 

separation and competitive scenarios. 
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7 TOP separation 

 

7.1 Pulp mill 

 
This study calculated the pulp mill mass balance for TOP separation to determine main 

process flows and department capacities. A greenfield softwood sulphate pulp mill with 

a capacity of a million air dry tonnes (ADt, 90% dry matter content) of bleached pulp per 

year was taken as the pulp mill design that was used as the basis for the calculations. 

The calculations also assumed that the wood feed is 100% pine, and all the wood is 

supplied to the mill unbarked. The crude sulphate soap obtained from the evaporation 

plant is acidulated into crude tall oil (CTO). The CTO yield was assumed to be 50 kg/ADt 

pulp, equalling 49 300 tonnes of CTO annually or 141 tonnes per day. Moreover the 

assumption was that chlorine dioxide, which is used as a bleaching chemical, is produced 

on site by reducing sodium chlorate with methanol. Simplified box diagram of the mill 

model is presented in the Figure 23. The mass balance for the mill model is further 

presented in Appendix 1. 

 

 

Figure 23. Simplified box diagram of the model mill and its main mass flows. 

 

7.2 Depitching process definition and equipment 

 
In this study, depitching is made similarly to that of a dry distillation plant. This method 

is technically more applicable to a pulp mill than wet distillation depitching due to its 



29 
 

lower effluent generation and generally better product quality, as mentioned in section 

2.1.3 of the Literature Review. CTO feed to the depitching stage is taken from the CTO 

storage tank after acidulation. The feed is estimated to be at atmospheric pressure and 

at a temperature of 80 ⁰C. This feed is then pre-heated to 180–200 ⁰C before the actual 

depitching stage. For the pre-heating, flashed steam condensate from the depitching 

stage is used: This way energy consumption can be lowered. 180–200 ⁰C is chosen as the 

temperature range, as in this range the residual water and unwanted volatiles will 

evaporate. However, it is still a stable temperature regarding degradation reactions of 

organic components, which tend to rapidly increase at temperatures over 200 ⁰C (Drew 

& Propst, 1981). To efficiently remove residual vapours from the liquid and to gain a 

good heat transfer rate, a falling film evaporator (FFE) is used as a pre-heater. To adjust 

the temperature of tall oil after pre-heating, a recirculation line is added. 

Next, from the preheater, heated CTO stream is used directly in the depitching stage, 

which is executed in a thin film evaporator (TFE) at 267 ⁰C and at an absolute pressure of 

1 kPa. In the model, heating happens with a high pressure steam through the heating 

jacket of the evaporator. In these conditions, suggested by Norlin (2012) and Huibers 

(2000), most of the free acids in tall oil are evaporated. In the tall oil industry, lower 

pressure and temperature levels are probably used, but this selected level represents 

maximum reasonable condition. Liquid TOP leaves the evaporator from the bottom and 

depitched crude tall oil (DCTO) vapours from the top of the evaporator. TOP is pumped 

from the TFE vessel to a heated storage tank. To allow better controllability of the 

depitching process, part of the leaving pitch can be circulated back to the TFE feed line. 

DCTO vapours need to be condensed before storage. This is done in a vapour condenser 

which has a connection to the vacuum system in order to maintain the desired pressure 

level for the whole process. As there is a risk of resin acids crystallising on the cooling 

surfaces (Soltes & Zinkel, 1989), a relatively hot cooler media has to be chosen. For the 

process, a cooling media inlet temperature of 120 ⁰C and a final product temperature of 

140 ⁰C are selected. After condensing, the DCTO is stored in a heated tank. Line diagram 

of the process is presented in Figure 24.  
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Figure 24. Line diagram for the depitching process. 

7.3 Process modelling 

 
Bjarne Holmbom extensively defined tall oil components for his doctoral dissertation 

(Holmbom, 1978), including their distribution between distillation fractions. The CTO 

measured for this work has a higher pitch and rosin acid content, and a lower fatty acid 

content than typical Finnish tall oil. However, these results were used as a basis for the 

process modelling in the present study, as they are more detailed than other 

measurements reviewed. Component identification and measurements for relevant tall 

oil fractions can be found in Appendix 2. In the model, the feed is considered to be pure 

of impurities such as ash or water, as their concentrations and contribution to the 

process are relatively small.   

The measurements show that some degradation and isomerisation reactions occur 

during fractionation. The TLO and TOP fractions are also quite poorly identified. To 

balance the model, pseudocomponents representing unknown pitch and heads 

compounds were introduced. CTO feed in the model was also manipulated to match 

product streams. Based on their chemical groups and volatility, the measured 

compounds were divided into ten model compounds and pseudocomponents. The 

manipulated streams and model compound classification are presented in Appendix 3. 

Process streams as model components are presented in Table 3.   
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Table 3. The depitching process streams as model components. Components marked 

with asterisks are pseudocomponents. 

 

 
These model compounds were used to simulate the mass and energy flows of the 

depitching process. Simulation was performed with Aspen Plus v9 software. Even 

though most of these model components are well-known and commonly used 

chemicals, empirical data on their thermodynamics are quite scarce. For example, a 

sufficient amount of experimental liquid vapour pressure data is only available for oleic 

and palmitic acid in the DIPPR database (The Design Institute for Physical Properties, 

2017). As the model components are mostly quite bulky, their thermodynamic 

behaviour was considered as ideal and unknown vapour pressures were manipulated to 

give similar process streams as in Holmbom’s studies. Other thermodynamic 

characteristics are estimated with Aspen’s component database. For 

pseudocomponents, a literature source (Drew & Propst, 1981) is used in the estimation 

of their thermodynamic properties. Pitch separation itself is modelled as a simple flash 

distillation. More accurate heat transfer models may be obtained by modelling the 

process as a batch distillation, or as several flash distillations in series (Ilmanen, 2017). 

However, the accuracy of the simple model is sufficient for this purpose. Mass and 

energy flows obtained from the model are presented in Figure 25. 

 

DCTO 
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Figure 25. Mass and energy flow results of the model. 

 

7.4 Energy balance 

 
Pulp mill mass balance and depitching process modelling results were used to calculate 

an energy balance for the mill. In the mill model, heat is produced in a recovery boiler by 

burning black liquor and in a biomass boiler by burning bark, and wood and pulp reject. 

Steam generated in these boilers is directed to a turbine plant. In the turbine plant, 

generators connected to steam turbines produce electricity from the potential 

difference of high pressure steam.   Heat needed in the pulp mill processes is extracted 

from the turbines as low and medium pressure steam. Pulp mills also produce excess 

amounts of steam that is used for electricity production with the help of a condensing 

tail connected to one of the turbines. A simplified diagram of the pulp mill model heat 

and power generation is shown in Figure 26. 
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Figure 26. Simplified diagram of pulp mill heat and power generation. 

 

Heat generation for these boilers was calculated from their fuel flows obtained from the 

mill mass balance. The heat and electricity consumption of the pulp mill and depitching 

processes was also estimated into the balance. With these values, the steam production 

and the two steam turbines of the model mill were balanced by using Prosim 5.14 

simulation software. During the simulation, the steam turbines were balanced as close 

to the same electricity production level as possible. The steam network balance shows 

the electricity production capacity of the mill, which was used to sum up the total 

energy production and consumption. The energy balance calculation sheet and a steam 

network diagram can be found in Appendices 4 and 5. 

Lime kiln fuel consumption was calculated by using specific heat consumption of 5.5 

MJ/kg calcium oxide (CaO), given by Arpalahti et al. (2008). All TOP from the depitching 

process is burned. Leftover energy is produced by burning heavy fuel oil. Effective heat 

value for the TOP is estimated to be 38 MJ/kg (Forchem Oy, 2011), and for heavy fuel oil 

39.2 MJ/kg (Arpalahti, et al., 2008). Essential production figures for the TOP separation 

scenario are summed up in Table 4. 
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Table 4. The key production figures of the TOP separation scenario. 

 

 

8 Competitive scenarios 

 
Tall oil depitching in a pulp mill has two main objectives: to produce a refined crude tall 

oil product and simultaneously renewable fuel for the lime kiln. To study its feasibility, 

alternative approaches to these objectives have to be compared to it. For the 

production of a refined crude tall oil product, an alternative choice is to produce crude 

tall oil in a traditional way, and further refine it in a distillation site. For the lime kiln fuel 

alternatives, the use of traditional heavy fuel oil was taken as a conventional scenario. 

Another renewable fuel, wood bark gas was also taken into consideration. Three 

competitive scenarios were built from these options: A conventional scenario, a bark 

gasification scenario, and a combined depitching and gasification scenario. All the 

scenarios are presented in Table 5 below. 

 

Table 5. The tall oil product grades produced and lime kiln fuels used in feasibility study 

scenarios. 

 

No Description CTO DCTO HFO TOP Bark gas

1 Depitching x x x

2 Conventional x x

3 Bark gasification x x

4 Combined depitching and gasification x x x

Tall oil grade Lime kiln fuel
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It is presumed that all the bark generating in the mill is used for energy production, 

either in a biomass boiler or in a combination of a biomass boiler and a bark gasifier, 

depending on the scenario. As the calculated mill mass balance (Appendix 1) does not 

take bark end use or lime kiln fuel consumption into consideration, it is valid for all the 

scenarios.  

 

8.1 Conventional case 

 
For conventional case, the energy balance was calculated similarly as in the depitching 

scenario without the additional heat and electricity consumptions of depitching 

equipment. HFO consumption in the lime kiln was calculated with the same principles 

and values as in section 7.4, this time without additional fuels. The size of the biomass 

boiler in this scenario is same as in the depitching one. The energy balance is presented 

in Appendix 6, and the key production figures in Table 6 in section 8.4 together with 

other scenarios. 

 

8.2   Bark gasification  

 
Besides tall oil pitch, bark gas is another renewable fuel option for a lime kiln that could 

be produced onsite from pulp production side streams with a gasifier. In this scenario, 

the gasifier was dimensioned so that carbon neutral operation can be reached, i.e. no 

additional fuels are needed in the lime kiln besides bark gas. For the bark gasification 

mass balance, similar equipment of the Metsä Fibre Joutseno pulp mill was taken into 

benchmarking. This way, the different efficiency of bark gas fuelled lime kiln compared 

to a one using liquid fuels can also be taken into consideration. In Joutseno, a combined 

bark dryer and gasification plant produces 48 MW of thermal power, which fuels up a 

lime kiln with a design capacity of 600 tons of Calcium oxide (CaO) per day. With a 

presumed design factor of 90%, this equals an average daily production of 540 tons CaO. 

Wet bark intake is 22 tons per hour and the dryer evaporation capacity is 12 tons per 

hour. Thus 54.5% of the original content of bark is evaporated, and the gasifier hourly 

intake is 10 tons of dry bark (Andritz, 2013).  
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In the model mass balance, the lime kiln average capacity is 832 tons of CaO per day. 

The gasification plant capacity in scenario was calculated based on the ratio of lime kiln 

capacities, calculated in equation 1: 

 

Scale ratio =  
Average capacity of the lime kiln in the scenario

Average capacity of the lime kiln in Joutseno 
=  

540

832
≈ 0.65        (1) 

 

Changes in the efficiency of drying and gasification due to size variation were neglected. 

Thus, in this scenario the gasification capacity is 74.0 thermal MW and the feed to the 

gasifier is 15.4 tons per hour. As the bark moisture content in this scenario is assumed to 

be only 50 w-%, which equals 15.4 tons per hour in the intake of the dryer, only that 

amount is evaporated. Thus, the bark gasification consumption is 30.8 tons of wet bark 

per hour. This amount of bark is diverted out of the biomass boiler heat production 

compared to the previous scenarios, which also decreases the capacity need of the 

boiler. 

Dryer heat demand was estimated to equal the heat needed to warm up the water and 

bark from an average temperature of 3 ⁰C to 100 ⁰C, and then the heat needed to 

evaporate the water. The equipment heat transfer efficiency was estimated to be 75%. 

Heat demand Q is calculated with the Equation 2: 

Q =
1

η
∗ (

�̇�𝑊

𝛥H𝑊
+

�̇�𝐵

𝛥𝐻𝐵 
) 

 

where, Q is system heat demand 

 η is the efficiency of the heat transfer system 

 ṁW is the mass flow of the evaporated water 

 𝛥H𝑊 is enthalpy change of the evaporated water 

 ṁ𝐵 is the mass flow of bark into the gasifier 

 𝛥H𝐵 is the enthalpy change of bark during drying 

(2) 
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With the equation above, the heat demand was estimated to be 16.2 MW. The 

electricity demand was evaluated to be 1200 kW. Using these heat and power 

consumption figures, the energy balance from the conventional scenario was modified 

for this scenario. The energy balance is presented in Appendix 7, and the key production 

figures in Table 6 in section 8.4 together with other scenarios. 

 

8.3 Combined depitching and gasification 

 
The last competitive scenario is an addition of a smaller bark gasifier to the depitching 

case to fully replace the use of HFO in lime kiln. This would be a tall oil refining option in 

which carbon neutral operation is also reached in the pulp mill. It was presumed that 

simultaneous burning of TOP and bark gas is possible without any additional losses. 

Energy balance for this scenario was done by calculating bark consumption figures 

equalling the remaining HFO usage in the depitching case. Same specific consumption 

figures were used as in the other bark gasification scenario. Thus, this scenario consists 

of a gasifier with a thermal capacity of 47.6 MW and a consumption of 19.8 tons of wet 

bark per hour. This was taken into consideration in the biomass boiler sizing and heat 

production. For this scenario, an energy balance can be found in Appendix 8 and the key 

production figures in Table 6 in section 8.4 together with the other scenarios. 

 

8.4 Production figures for the scenarios 

 
The production figures of the scenarios are gathered and presented in Table 6.  As the 

conventional scenario depicts a traditional pulp mill without additional upgrades, it is 

presented first in the Table. The figures are analysed in section 10.1.  
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Table 6. Key production figures of each scenario. 

 

 

9 Economic evaluation 

 

9.1 Investment costs 

 
Investment cost needs to be evaluated to compare economic feasibility. In this study, 

the investment costs were estimated based on the cost data of Pöyry. As the accuracy of 

these estimations was rough, a contingency of 20% was added to each of them. As the 

conventional scenario is featuring a traditional pulp mill, it was used as a base case for 

investment costs to which other scenarios were compared to.  

The investment cost of a depitching plant was estimated for equipment shown in Figure 

23. The size of the depitching department is relatively small, so the assumption was 

made that no investments are needed to common mill site resources or to an individual 

building. Due to the corrosiveness of the depitching process, special steel alloys such as 

904L and 254 SMO were used in the estimation. This increased the investment cost, 

which was estimated to be 2.2 million euros (M€).  

The bark gasification equipment is significantly larger by area than depitching. As the 

process flows of bark gasification are quite large too, it also needs investments into civil 

works and into some common mill resources such as instrument air capacity. Due to the 

significant bark consumption of the gasifier, this scenario needs a significantly smaller 

biomass boiler than the conventional scenario. The smaller boiler investment cost was 
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compensated based on steam production to match the lower capacity demand of this 

scenario. This compensation was excluded from the contingencies basis, as the 

contingencies related to biomass boiler are included in the conventional scenario. 

Differences in lime kiln sizing due to gaseous fuel were not taken into consideration in 

these calculations. The investment cost is estimated to be 17.1 M€.  

For the combined depitching and gasification scenario, the investment cost was 

estimated based on previous scenarios. Price of the bark gasification equipment was 

scaled from the stand-alone gasification scenario, and summed with the depitching case. 

Indirect costs are higher than in previous scenarios due to the extent of this investment. 

In the study, this scenario was also given compensation from the smaller biomass boiler 

capacity demand. Like in the previous scenario, the compensation was not included in 

the contingencies basis. The investment cost for this scenario is estimated to be 19.6 

M€.  

Cost breakdown of the investment calculations can be found in Appendix 9. 

 

9.2 Operational revenue 

 
Operational revenues are based on the difference between production volumes 

presented in Table 6. Conventional scenario was taken as a base case and the 

operational revenues of other scenarios were compared against it. Maintenance and 

staff costs were estimated to be the same for all the scenarios as they can be efficiently 

integrated to other mill services. The possible taxes and other overheads were also 

neglected as they are very location and situation specific. In this comparison, price 

variables were considered for three parameters: tall oil (either crude or depitched) 

production, electricity sales and fuel oil consumption. Operational revenue dependence 

of these variables is shown in Figures 25–27. In each of the Figures, the other two 

variables were set to current market prices shown in Table 7. 
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Table 7. North Europe market prices for scenario variables. 

 
* K. Ukkonen, personal communication, 9 April 2018. 

 

Figure 27. Sensitivity of operational revenue to CTO price. 

 

Figure 28. Sensitivity of operational revenue to electricity price. 
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Figure 29. Sensitivity of operational revenue to HFO price. 

 

9.3 Investment payback period 

 
Using these previously calculated operational revenue and investment cost calculations, 

an investment payback period was calculated by dividing an investment cost with annual 

operational revenue. In this study, annual operational revenue was obtained by 

multiplying the daily revenues of scenarios with the operation days of the mill: In 

scenarios, it is 350 days per year. This calculation used the current market prices of the 

products. The results are presented in Table 8. 

Table 8. Investment costs, annual operational revenues and payback periods for 

different scenarios. 
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10 Results 

 

10.1 Technical feasibility 

 
From the two common depitching methods, depitching with a thin film evaporator was 

evaluated to be more applicable in pulp mills based on the Literature Review. From the 

production figures in Table 6, it can be noted that tall oil depitching slightly increases 

process heat consumption and simultaneously lowers electricity generation and sales. 

Compared to gasification scenario, these changes are minimal, as gasification both 

needs a significant amount of process heat to bark drying, and on the same time diverts 

bark away from general process heat production and into lime kiln heating.  However, 

the tall oil pitch is only able to supply 36% of heat energy needed in the lime kiln: During 

normal operation, additional fuels are needed to produce the rest. 

Combined depitching and gasification scenario was introduced to produce depitched tall 

oil and to reach carbon neutral operation in lime kiln. Compared to just gasification, the 

drop in pulp mill process heat generation is lower because a smaller amount of bark is 

diverted from the biomass boiler. Mostly due to this, the combined scenario produces 

more electricity. 

It is interesting to notice that the electricity consumption of the pulp mill decreased in 

the gasification scenarios, compared to conventional and depitching scenarios. This is 

mostly due to decreased energy consumption in the cooling water towers, as the use of 

a condensing tail is lowered. However, this change is small compared to the ones 

mentioned before. 

 

10.2 Economic feasibility 

 
The figures that are used to analyse the economic feasibility of the scenarios are 

gathered in Table 8. As can be noticed from the figures, depitching has the lowest 

investment cost. This is due to the small size of the equipment and overall process area. 

The investment costs of gasification and combined processes were significantly higher 

due to the size of the dryer and the gasifier in these processes. The difference in 
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investment cost between these two is small and in favour of the standalone gasification. 

However, the difference is only about half of the contingencies given for the scenarios, 

so it is inconclusive. 

 In the operational revenue comparison, all the advanced scenarios generated better 

revenue than the conventional scenario in most of the situations studied. The bark 

gasification and combined depitching and gasification scenarios produced higher 

revenues in most of the situations. This is mostly due to their independency from heavy 

fuel oil. Increased HFO price did not change the profitability of these scenarios; it made 

the alternative cost higher, in other words the other scenarios less profitable. With 

electricity price, there is similar but inverse effect: Higher electricity prices lower the 

profitability of gasification scenarios, as they have lower electricity production capacity. 

From the CTO price sensitivity analysis in Figure 27, it can be noticed that high CTO price 

lowers the profitability of DCTO production scenarios. This is because of the higher price 

of DCTO is not capable of compensating all the loss in production volumes. Thus, the 

profitability of these scenarios is relying on savings acquired through TOP utilisation.  

Comparison between payback periods reveals that the payback period of depitching is 

less than 1/3 of the time needed for other scenarios. This is again due to the low 

investment costs of the equipment. Between the two gasification solutions, there is a 

difference in favour of standalone bark gasification. 

 

11 Conclusions 

 
This study aimed to evaluate the technical and economic profitability of tall oil 

depitching in a pulp mill. Technically, tall oil depitching is easy to perform in a pulp mill. 

The equipment and process area needed are somewhat small, as is its influence on 

overall pulp mill product streams: The heat and electricity consumptions of the process 

are negligible. It also has low investment cost and investment payback period. However, 

it is not able to produce enough pitch to fuel the lime kiln completely.  

To reach carbon neutral operation in the lime kiln, a bark gasifier could be added to 

produce the remaining energy needed. Comparison between bark gasification and 
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combined depitching and gasification revealed that even though the combined scenario 

has higher investment cost, the investment payback periods for the scenarios were 

relatively close to each other. Combined depitching and gasification was not as sensitive 

to increased electricity price as the standalone gasification, but it was more sensitive to 

CTO price increase. 

Based on the balance comparisons and calculations made in this thesis, it can be 

concluded that tall oil depitching is a feasible process for the pulp mill, with or without 

supplementary bark gasification. It helps the mill to reach carbon neutral operation, but 

it is not a complete solution for this target on its own. Especially it gives more security 

against electricity price increase when alternative costs are taken into account. In the 

future, the depitching could be further optimised for different needs, for example to 

tailor raw materials for biofuels production or distillation, or to phytosterols extraction. 

It should be noted that the calculations made in the experimental study contain a vast 

amount of assumptions and exclusions, most of which are location and case specific. 

This work offers a comparison between different process scenarios, but the profitability 

of each scenario should be evaluated case by case. 

 

 

  



45 
 

12 References 

Alalauri, H. 1995. The Naval Stores Industry. Kemia-Kemi. Vol. 22(6). P. 496-497. 

Andritz AG. 2013. Gasification helps mill go fossil fuel-free. Spectru. Vol. 28. P. 6-9. 

Arpalahti, O., Engdahl, H., Jäntti, J., Kiiskilä, E., Liiri, O., Pekkinen, J., Puumalainen, R., 

Sankala, H. & Vehman-Kreula, J. 2008. White liquor preparation. In: Tikka, P. (ed). 

Chemical Pulping Part 2, Recovery of Chemicals and Energy. Helsinki, Finland: Paper 

Engineers' Association.  P. 124-193. 

Baumassy, M. 2016. The Talloil and Resin Industry: Global overview and Trends. In: 2016 

PCA International conference.  Santiago de Chile, Chile. 2016.  

Belitz, H.-D., Grosch, W. & Schieberle, P. 2004. Food Chemistry. 3rd ed. Heidelberg, 

Germany: Springer-Verlag. 1070 p. 

Bress, D. 1982. Advanced pollution control technology in the steam distillation of tall oil. 

Naval Stores Review. Vol. 92(3). P. 13-17. 

Conner, A. 1989. Chemistry of Other Components in Naval Stores. In: Zinkel, D. & 

Russell, J. (eds). Naval Stores. New York, USA: Pulp Chemicals Association. P. 440-475. 

Conner, A. & Rowe, J. 1975. Neutrals in southern pine tall oil. Journal of The American 

Oil Chemists' Society. Vol. 52. P. 334-338. 

Drew, J. & Propst, M. 1981. Tall Oil. New York, USA: Pulp Chemicals Association. 

Duncan, D., 1989. Tall Oil Fatty Acids. In: Zinkel, D. & Russell, J. (eds). Naval Stores. New 

York, USA: Pulp Chemicals Association. P. 346-439. 

Ekman, R. 1979. Analysis of the nonvolatile extractives in Norway spruce sapwood and 

heartwood. Acta Academiae Aboensis B. Vol. 39(4). P. 1-20. 

Ekman, R. & Holmbom, B. 2000. The Chemistry in Wood Resin. In: Back, E. & Allen, L. 

(eds). Pitch control, Wood Resin and Deresination. Atlanta, USA: Tappi Press. P. 37-76. 

European Comission. 2017. Propsal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT 

AND OF THE COUNCIL on the promotion of the use of energy from renewable sources, 

Brussels, Belgium: European Union. 

European Commission. 2018. International trade statistics. Luxemburg: European Union. 

European Parliament. 2015. Directive (EU) 2015/1513. Luxemburg: European Union. 

Foran, C. 1983. Black liquor soap recovery methods employed by Union Camp 

Corporation. In: International tall oil symposium. Imatra, Finland 7.-9. June 1983. Turku, 

Finland: Åbo Akademis kopieringscentral. P. 59-88. 



46 
 

Foran, D. 2017. Acidulation of black liquor soap: The manufacture of crude tall oil (CTO). 

In: 2017 Short Course on Soap & Turpentine Recovery and Tall Oil Processing. Orlando, 

USA: Pine Chemicals Association International. 

Forchem: Tall Oil Products. Forchem Oy. [Cited 18 April 2018]. Available at: 

http://www.forchem.com/files/642/forchem_datasheet_FORTOP600_002.pdf. 

Freese, H. & Vock, H. 1982. Controlling pollution in a Luwa tall oil distillation plant. Naval 

Stores Review. Vol. 92(3). P. 8-12. 

Hase, A., Harva, O. & Pakkanen, T. 1974. Origin of bicyclic acids in tall oil. Journal of 

American Oil Chemists' society. Vol. 51. P. 181-183. 

Hermann, M. & Kuratle, R. 1983. Retrofitting of tall oil distillation. In: International tall 

oil symposium. Imatra, Finland 7.-9. June 1983. Turku, Finland: Åbo Akademis 

kopieringscentral.  P. 195-202. 

Holmbom, B. Constituents of Tall Oil: A study of tall oil processes and products. Doctoral 

dissertation. Åbo Akademi. Turku. 1978. 27 p. 

Holmbom, B. 2011. Extraction and utilization of non-structural wood and bark 

components. In: Alén, R. (ed). Papermaking Science: Biorefining of Forest Resources. 

Helsinki, Finland: Paper Engineers' Association. P. 176-224. 

Holmbom, B. & Avela, E. 1971. Studies on tall oil from pine and birch: I. Composition of 

fatty and resin acids in sulfate soaps and in crude tall oils. Acta Academiae Aboensis B. 

Vol. 31(13). P. 1-14. 

Holmbom, B. & Eckerman, C. 1983. Tall oil constituents in kraft pulping - effect of 

pulping temperature. Tappi Journal. Vol. 66(5). P. 108-109. 

Holmbom, B. & Ekman, R. 1978. Tall oil precursors of scots pine and common spruce and 

their change during sulphate pulping. Acta Academiae Aboensis B, 38(3), P. 1-11. 

Holmbom, B. & Erä, V. 1978. Composition of tall oil pitch. Journal of The American Oil 

Chemists' Society. Volume 55. P. 342-344. 

Huibers, D. 2000. Tall Oil. In: Kirk-Othmer Encyclopedia of Chemical Technology. 

Hoboken, USA :John Wiley & Sons, Inc. P. 1-7. 

Ilmanen, P. 2017. Modeling of thin film evaporator for ionic liquid recycling. Master’s 

thesis. Aalto University, School of Chemical Engineering. Espoo. 54 p. 

Isotalo, K. 1996. Puu- ja sellukemia. Helsinki, Finland: Opetushallitus. 144 p. 

Johansson, A. 1983. Purification of sulphate soap. In: International tall oil symposium. 

Imatra, Finland 7.-9. June 1983. Turku, Finland: Åbo Akademis kopieringscentral.  P. 99-

107. 



47 
 

Johnson, S. & Potier, N. 1997. Tall oil recovery with carbon dioxide - A cost effective 

solution to reduce sulfur input to the kraft recovery cycle. Orlando, USA. Emerging 

Technology Transfer, Inc. 

Lawrence, R. 1959. Oxidation of resin acids in wood chips. TAPPI. Vol. 42(10). P. 867-869. 

Laxén, T. & Tikka, P. 2008. Soap and Tall Oil. In: Tikka, P. (ed). Chemical Pulping Part 2, 

Recovery of Chemicals and Energy. Helsinki, Finland: Paper Engineers' Association. P. 

359-380. 

Leach, J. & Takore, A. 1976. Toxic constituents in mechanical pulping effluents. TAPPI. 

Vol. 59(2). P. 129-134. 

Leach, J. & Thakore, A. 1978. Compounds toxic to fish in pulp mill waste streams. 

Progress in Water Technology. Vol. 9. P. 787. 

Lehtinen, I. 2011. Mäntypien ja -raakarasvahappojen vaihtoesteröinti metanolilla. 

Master’s thesis. Aalto University, School of Chemical Technology. Espoo. 

Lindqvist, H. 1983. Hydrodynamic separation of CTO. In: International tall oil symposium. 

Imatra, Finland 7.-9. June 1983. Turku, Finland: Åbo Akademis kopieringscentral.  P. 131-

136. 

Lövberg, C.-E. 1983. Mixed pine-birch soap as a raw material for the chemical industry. 

In: International tall oil symposium. Imatra, Finland 7.-9. June 1983. Turku, Finland: Åbo 

Akademis kopieringscentral. 

Nikunen, E., Leinonen, R. & Kultamaa, A. 1990. Environmental properties of chemicals, 

Helsinki, Finland: VAPK-Publishing. 

Nordpool Market Data. Nord Pool AS. [Cited 10 January 2018]. Available at: 

https://www.nordpoolgroup.com/Market-data1/ 

Norlin, L. 2012. Tall Oil. In: Ullman's Encyclopedia of Industrial Chemistry. Weinheim, 

Germany: Wiley-VCH. P. 583-596. 

Oikari, A. 1987. Acute lethal toxicity of of some reference chemicals to freshwater fishes 

of Scandinavia. Bulletin of Environmental Contamination and Toxicology. Vol. 39. P. 23. 

Pensar, G. 1977. Puun Uuteaineet. In: Jensen, W. (ed). Puukemia. Turku, Finland: 

Suomen Paperi-insinöörien Yhdistys. P. 186-213. 

Peters, D. & Stojcheva, V. 2017. Crude tall oil low ILUC risk assessment. Utrecht, 

Netherlands: UPM. 30 p. 

Pinola Kraft Soap Technology. Head Engineering AB. [Cited 6 February 2017]. 

Available at: https://industry.pulpandpaper-technology.com/suppliers/head-

engineering/productspec/1489739387-pinola-brochure-pb201105.pdf. 



48 
 

Pohjantähti, J. 2012. Hydrodeoxygenation of distilled tall oil. Master’s thesis. Aalto 

University, the School of Chemical Technology. Espoo, Finland.  

Poikolainen, H. 2018. Dynamics of the Tall Oil Business. Montreal, BIOFOR International 

Montreal 2018. 

Puustinen, M. 2015. Sustainability aspects of crude sulfate soap acidulation to crude tall 

oil. Master’s thesis. Aalto University, School of Chemical Technology. Espoo, Finland.  

Rautalin, T., 2009. Tall oil naphta. Master’s thesis Helsinki University of Technology. 

Espoo, Finland.  

Riistama, K., Laitinen, J. & Vuori, M., 2003. Mäntyöljyn tuotanto. In: Riistama, K., 

Laitinen, J. & Vuori, M. (eds). Suomen kemianteollisuus. Helsinki, Finland: Chemas Oy. P. 

135-140. 

Rogers, I. et al. 1975. Fish toxicants in kraft effluents. TAPPI. Vol. 58. P. 136-140. 

Rydholm, S. 1965. Removal of Impurities. In: Rydholm, S. (ed). Pulping Processes. New 

York: John Wiley & Sons, Inc. P. 1024-1060. 

Saranpää, P. & Nyberg, H. 1987. Lipids and sterols of Pinus sylvestris L. sapwood and 

heartwood. Trees. Vol. 1. P. 82-87. 

Sjöström, E. 1993. Wood Chemistry: Fundamentals and Applications. 2nd ed. San Diego, 

USA: Academic Press. 

Smith, K. 1989. Vinsol Resin and Tall Oil Pitch. In: Zinkel, D. & Russell, J. (eds). Naval 

Stores. New York: Pulp Chemicals Association. P. 715-737. 

Soltes, E. & Zinkel, D. 1989. Chemistry of Rosin. In: Zinkel, D. & Russell, J. (eds). Naval 

Stores. New York: Pulp Chemicals Association. P. 261-345. 

Ström, G., Stenius, P., Lindström, M. & Odberg, L. 1990. Surface chemical aspects of the 

behavior of soaps in pulp washing. Nordic Pulp and Paper research Journal. Vol. 5. P. 44-

51. 

The Design Institute for Physical Properties. 2017. DIPPR Project 801. Provo, USA: BYU-

DIPPR Thermophysical Properties Laboratory. 

Turner, J. 2010. 2008 International Yearbook, Forest Chemicals Review. New Orleans, 

USA: Kriedt Enterprises. 

Ukkonen, K. 2016. Pine Chemicals - Global view. 2016 PCA International Conference. 

Santiago de Chile, Chile. 

United Nations. 2015. Paris Agreement. Paris, France: United Nations. 



49 
 

United States Environmental Protection Agency. 2017. Renewable Fuel Standard 

Program. [Cited 16 February 2018]. Available at: https://www.epa.gov/renewable-fuel-

standard-program 

US3965085A. 1976. Method for refining of soaps using solvent extraction. (Holmbom, B. 

& Avela, E.). 

US8680324 B2. 2014. Process for separating sterols and acids from tall oil pitch. Raisio 

Nutrition Ltd. (Hamunen, A., Orte, J., Kalmari, Mokkila, K. & Kallio-Meriluoto, M.) 27 

February 2009. 

Vainiomäki, T. 1995. Mäntyöljytislauksen Mallitus. Master’s thesis. Helsinki University of 

Technology. Espoo, Finland. 

Walter, J., Han, J. & Zinkel, D. 1989. Fate of resin acids in kraft pulping. Naval Stores 

Review, Vol. 99(1). P. 17-19. 

Vikström, F., Holmbom, B. & Hamunen, A. 2005. Sterols and triterpenyl alcohols in 

common pulpwoods and black liquor soaps. Holz als Roh- und Werkstoff. Vol. 63. P. 303-

308. 

WO2017137908. 2017. Distillation of neutral compounds from tall oil soap. ( Kavakka, J. 

& Lotti, H.). 

Wolosik, K., Knas, M., Zalewska, A., Niczyporuk, M. & Przystupa, A.W. 2013. The 

importance and perspective of plant-based squalene in cosmetology. Journal of 

Cosmetic Science. Vol. 64. P. 59-63. 

Wong, A. 2001. Sterols in soap and tall oil from North American kraft pulp mills. Forest 

Chemicals Review. Vol. 111. P. 12-17. 

Ödberg, L., Forsberg, S., McBride, G., Persson, M. & Ström, G. 1985. Surfactant 

behaviour of wood resin components 2. Solubilization in micelles of rosin and fatty 

acids. Svensk Papperstidning. Vol. 88. P. R118-R124. 

 



LIST OF APPENDICES
Appendix 1: Pulp mill mass balance
Appendix 2: Tall oil chemical constituents
Appendix 3: Tall oil model
Appendix 4: Mill energy balance for Depitching
Appendix 5: Electricity generation and steam distribution for the depitching case
Appendix 6: Mill energy balance for Conventional scenario
Appendix 7: Mill energy balance for Bark gasification
Appendix 8: Mill energy balance for combined Depitching and Gasification
Appendix 9: Investment cost breakdown of different scenarios



PUL
P M

ILL
 MA

IN D
IME

NSI
ON

ING
OY

 DIP
PA 

AB
FIB

RE 
AND

 CH
EM

ICA
L B

ALA
NC

ES
MIL

L
INP

UT 
VAL

UES
The

sis
MO

DEL
 MIL

L
WO

OD
 PR

OC
ESS

ING
WO

OD
 TO

 TH
E M

ILL
PRO

CES
S / 

WO
OD

Sul
fate

 Pin
e

Wo
od l

oss
es

Pur
cha

sed
 chi

ps
0

%
BLE

ACH
ING

D0-
EOP

-D1
- W

ood
yard

0.1
V-%

Unb
arke

d w
ood

100
%

ANN
UAL

 PR
OD

UCT
ION

1 00
0 00

0
ADt

/a
- W

ood
han

dlin
g

1.5
V-%

For
estd

eba
rked

 wo
od

0
%

OPE
RAT

ION
 DA

YS
350

d/a
- Ch

ip s
tora

ge
0.2

V-%
Fre

sh R
oun

dwo
od 

Cha
rac

teri
stic

s
Sto

rag
e tim

es
Ave

rag
e pr

odu
ctio

n
2 8

57
ADt

/d
- Ch

ip s
cree

ning
1.0

V-%
- W

ood
 mo

istu
re

50
w-%

- Ro
und

woo
d st

orag
e

21
d

Des
ign 

pro
duc

tion
3 1

75
ADt

/d
TOT

AL 
LOS

S
2.8

V-%
- W

ood
 den

sity
410

kgB
D/  

m3 sub
- Ch

ip s
tora

ge
5

d
Ope

ratio
n d

ays
350

d/a
- Ba

rk c
onte

nt, 
deb

arke
d w

ood
4.0

V-%
- Ho

g fu
el s

tora
ge

7
d

Ope
ratio

n tim
e w

ood
h./c

hipp
ing

24
h/d

- Ba
rk c

onte
nt, 

unb
arke

d w
ood

12
V-%

Ope
ratio

n  t
ime

 at 
chip

 scr
een

ing
24

h/d
- Ba

rk d
ens

ity
380

kgB
D/  

m3 s
- Ba

rk c
onte

nt o
f ch

ips 
to d

ig.
0.5

w-%
Rel

ief V
apo

ur
Rel

ief v
apo

ur
Con

tam
inat

ed c
ond

ens
ate

Dire
ct s

team
0

kg/A
Dt

50
kg/A

Dt
Dire

ct s
team

0
150

Wa
sh l

iqui
d

500
kg/A

Dt
kg/A

Dt
kg/A

Dt
2.5

t/AD
t

Con
den

sate
/ wa

ter
Dilu

tion
, to

tal
0

kg/A
Dt

2.5
t/AD

t
CO

OK
ING

KNO
T S

EPA
RAT

ION
,

OXY
GEN

 DE
LIG

NIF
ICA

TIO
N

BLE
ACH

ING
90

%IS
O

DRY
ING

WA
SHI

NG
/SC

REE
NIN

G
WA

SHI
NG

Yie
ld lo

ss
3.0

%
Kap

pa N
um

ber
35

Kno
ts to

 coo
k

1.0
%

Kap
pa N

um
ber

14.0
SEQ

UE
NC

E
D0

EOP
D1

TOT
AL

Pul
p to

 dry
ing

100
%

Coo
king

 yie
ld c

hips
47.0

%
Kno

ts o
ut

0.0
%

Yie
ld lo

ss
3.0

%
Cle

anin
g re

ject
0.10

%
Coo

king
 yie

ld k
nots

60
%

Rej
ect 

retu
rn

0.0
%

Alk
ali, 

NaO
H

27.0
kg/A

Dt
-C

lO 2
 (as

 ClO
2)

kg/A
Dt

8.0
4.0

12.0
Coo

king
 yie

ld  r
ejec

ts
0.0

%
Rej

ects
 out

0.5
%

O 2
20.0

kg/A
Dt

-H
2O 2

kg/A
Dt

3.0
3.0

Rea
ctio

n w
ater

 of w
ood

1.1
%

Kno
ts o

ut, 
con

sist
enc

y
30

%
Mg

SO
4

3.0
kg/A

Dt
-O

2
kg/A

Dt
5.0

5.0
PAP

ER 
MIL

L
Rej

ect 
out,

 con
sist

enc
y

15
%

-N
aOH

kg/A
Dt

20.0
20.0

-H
2SO

4
kg/A

Dt
5.0

5.0
Pul

p to
 Pa

per
 Mil

l
0

%
Dilu

tion
, re

cyc
led 

filtra
te

-H
Cl

kg/A
Dt

0.0
Add

ition
al w

ater
from

 ble
ach

ing
-N

a 2S
2O 5

kg/A
Dt

1.5
1.5

t/AD
t

0.5
WH

ITE
 LIQ

UO
R C

HAR
GE

0.0
t/AD

t
-M

gSO
4

kg/A
Dt

0.0
- Ef

fect
ive 

alka
li ch

arg
e on

 dry
 wo

od, 
NaO

H
20.0

%
Inor

gan
ic D

S  i
n fil

trat
e

-T
alc

kg/A
Dt

2.0
2.0

Des
ign

 fac
tor

- Ac
tive

 alk
ali c

har
ge o

n d
ry w

ood
, Na

OH
25.

0
%

0.2
p-%

 of f
iltra

te
-O

3
kg/A

Dt
0.0

Wo
odh

and
ling

80
%

Con
ting

enc
y

Org
anic

 DS
 in f

iltra
te

Oth
ers=

 ClO
2-p

lant
, sc

rub
ber

Chi
p sc

reen
ing

90
%

%
5

t/AD
t

0.3
p-%

 of f
iltra

te
Coo

king
90

%
Dek

nott
ing,

 Wa
shin

g
90

%
We

ak b
lack

 liqu
or

EVA
POR

ATI
ON

 PL
ANT

WH
ITE

 LIQ
UO

R P
LAN

T
Scr

een
ing,

 Wa
shin

g
90

%
O 2-

deli
gnif

icat
ion

90
%

Bio
slud

ge
4.4

kg D
S/A

Dt
Dry

 So
lids

 Co
nce

ntra
tion

LIM
E P

RO
PER

TIE
S

WH
ITE

 LIQ
UO

R P
RO

PER
TIE

S
Ble

ach
ing

90
%

10
%

- St
ron

g B
L ou

t
83

%
Dry

ing
85

%
- Ch

lorin
e

 Lim
e av

aila
bilit

y, r
ebu

rnt
80

%
- Ac

tive
 alk

ali*
140

NaO
H-g

/l
Eva

por
atio

n
90

%
- M

ake
-up

 lim
e, a

s C
aO

3.0
kg/A

Dt
- Ef

fect
ive 

alka
li*

112
NaO

H-g
/l

Rec
ove

ry b
oile

r
90

%
Dry

 So
lids

 Lo
sse

s/S
pills

:
Lign

in s
epa

ratio
n

0
kg/A

Dt
- M

ake
-up

 lim
e av

aila
bilit

y
79

%
- To

tal t
itra

tive
 alk

ali *
158

NaO
H-g

/l
Cau

stic
izin

g
90

%
- W

ash
ing 

loss
, ino

rg.
3.0

kg/A
Dt

- Hy
poc

hlor
ite

Mak
e-u

p lim
esto

ne, 
as C

aCO
3

3.0
kg/A

Dt
- Ac

tivit
y

88.
4

%
Lim

e ki
ln

90
%

- W
ash

ing 
loss

, or
g.

4.5
kg/A

Dt
REC

OVE
RY 

BO
ILE

R
- M

ake
-up

 lim
esto

ne a
vail

abil
ity

79
%

- Su
lfidi

ty
40

%
ClO

2-pl
ant

85
%

- Sp
ills 

in B
S a

rea
5

kg/A
Dt

- L
ime

 to 
efflu

ent 
trea

tme
nt

0.0
kg/A

Dt
- Ca

usti
city

82
%

Oth
er c

hem
ical

 pla
nts

90
%

- Sp
ills 

in r
eco

very
 are

a
3

kg/A
Dt

-**
Res

idua
l Ca

CO
3 in

 bu
rnt 

lime
0.0

%
- Re

duc
tion

 Eff
icie

ncy
92

%
MIL

LW
IDE

90
%

- Vo
latil

e lo
ss

19
kg/A

Dt
- Hy

poc
hlor

ite
**R

esid
ual 

lime
 in l

ime
 mu

d
0.0

%
- In

erts
 in w

hite
 liqu

or*
5

g/l
Lign

in s
epa

ratio
n

85
%

- Ta
ll oi

l yie
ld

50.0
kg/A

Dt
** in

clud
ed i

n L
ime

 ava
ilab

ility
, re

bur
nt

- Sp
ecif

ic g
ravi

ty*
117

4g
/l

*at 
25

°C
AD

t= a
ir d

ry (
90%

) to
n of

 pu
lp

Appendix 1: Pulp mill mass balance
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kg/t CTO CTO TOP   DCTOResin acids 369 8.9 345Secodehydroabietic 4.5 0 3.7Pimaric 33.4 0.3 29.6Isopimaric 26.3 0.4 22.9Sandaracopimaric 6.8 0.1 6Palustric 31 0.9 37.2Abietic 171 3.9 150Neoabietic 37 0.6 16.37,9-Abietadienoic acid & other abietadienoic 0 0 2.8Dehydroabietic & similar 58.8 2.7 76.5Fatty acids 256 1.1 248Palmitic 8 0 8.117ai (methylhexadecanoic acid) 3.6 0 3.7Pinolenic 30.5 0.1 29.3Linoleic 95.9 0.3 92.9Oleic 67.3 0.3 69Stearic 2.3 0 2.3Cyclopinoleic 0.3 0 1.318:3 ttt (eleostearic acid) 8.4 0 5.818:2 tt (linolelaidic acid) 12.3 0.1 10.7Eicosatrienoic 12.1 0.1 11.620:2 2.8 0 2.520:1 1.5 0 1.3Arachidic 2.8 0 2.7Behenic 5.5 0.1 5Lignoceric 2.4 0.1 1.7 As esters 39.2 23.2 2Palmitic 1.3 1 017ai (methylhexadecanoic acid) 0.6 0.4 0Pinolenic 4.2 1.5 0.3Linoleic 14.4 6 0.8Oleic 9.8 8.2 0.7Stearic 0.5 0.4 018:3 ttt (eleostearic acid) 1.1 1 018:2 tt (linolelaidic acid) 1.8 1.9 0.1Eicosatrienoic 3.4 0.8 0.120:2 0.4 0 020:1 0.2 0 0Arachidic 0.4 0.4 0Behenic 0.8 1.1 0Lignoceric 0.3 0.5 0Unsaponifiables 118 88.8 50.8Pimaradiene 1 0 1Hydrocarbon, MW=256-258 0 0 4.1Pimaral 5.7 0 5.7Isopimaral 2.1 0 2.1Pinosylvin dimethyl ether 1.5 0 1.5Dehydroabietal 1 0 1Abietal 2.2 0 2.2Squalene 2 0 1.73.5-stigmastadiene 0.3 1.7 3.3
β-sitosterol 4.4 0.4 0.6 As esters 33.7 22.8 0Dehydroabietic methyl ester 0.2 0 0Abietic methyl ester 0.2 0 0Pimarol 5.2 2 0Docosanol 1.7 1.2 0Tatracosanol 1.7 1.1 0
β-sitostearate 24.7 18.5 0Total 718 58.1 618Pitch, unidentified 235 235 0Fraction yield, kg/t CTO 1000 293 686% identified 71.8 19.8 90.1% 95.3 100 90.1

DepitchingCTO

TOP

DCTO

Appendix 2: Tall oil chemical constituents



CTO  TOP   DCTO   % to TOP  % to DCTO    Model componentResin acids 354 8.9 345 2.5 97.5Secodehydroabietic 3.7 0 3.7 0.0 100.07,9-Abietadienoic acid & other abietadienoic 2.8 0 2.8 0.0 100.0Pimaric 29.9 0.3 29.6 1.0 99.0Sandaracopimaric 6.1 0.1 6 1.6 98.4Isopimaric 23.3 0.4 22.9 1.7 98.3Palustric 38.1 0.9 37.2 2.4 97.6Abietic 154 3.9 150 2.5 97.5Dehydroabietic & similar 79.2 2.7 76.5 3.4 96.6Neoabietic 16.9 0.6 16.3 3.6 96.4Fatty acids 249 1.1 248 0.4 99.6Palmitic 8.1 0 8.1 0.0 100.017ai (methylhexadecanoic acid) 3.7 0 3.7 0.0 100.0Stearic 2.3 0 2.3 0.0 100.0Cyclopinoleic 1.3 0 1.3 0.0 100.018:3 ttt (eleostearic acid) 5.8 0 5.8 0.0 100.020:2 2.5 0 2.5 0.0 100.020:1 1.3 0 1.3 0.0 100.0Arachidic 2.7 0 2.7 0.0 100.0Linoleic 93.2 0.3 92.9 0.3 99.7Pinolenic 29.4 0.1 29.3 0.3 99.7Oleic 69.3 0.3 69 0.4 99.6Eicosatrienoic 11.7 0.1 11.6 0.9 99.118:2 tt (linolelaidic acid) 10.8 0.1 10.7 0.9 99.1Behenic 5.1 0.1 5 2.0 98.0 BehenicLignoceric 1.8 0.1 1.7 5.6 94.4 Lignoceric As esters 25.2 23.2 2 92.1 7.9Pinolenic 1.8 1.5 0.3 83.3 16.7Linoleic 6.8 6 0.8 88.2 11.8Eicosatrienoic 0.9 0.8 0.1 88.9 11.1Oleic 8.9 8.2 0.7 92.1 7.918:2 tt (linolelaidic acid) 2 1.9 0.1 95.0 5.0Palmitic 1 1 0 100.0 0.017ai (methylhexadecanoic acid) 0.4 0.4 0 100.0 0.0Stearic 0.4 0.4 0 100.0 0.018:3 ttt (eleostearic acid) 1 1 0 100.0 0.020:2 0 0 0 0.0 0.020:1 0 0 0 0.0 0.0Arachidic 0.4 0.4 0 100.0 0.0Behenic 1.1 1.1 0 100.0 0.0Lignoceric 0.5 0.5 0 100.0 0.0Unsaponifiables 140 88.8 50.8 63.6 36.4Pimaradiene 1 0 1 0.0 100.0Pimaral 5.7 0 5.7 0.0 100.0Isopimaral 2.1 0 2.1 0.0 100.0Pinosylvin dimethyl ether 1.5 0 1.5 0.0 100.0Dehydroabietal 1 0 1 0.0 100.0Abietal 2.2 0 2.2 0.0 100.0Squalene 1.7 0 1.7 0.0 100.0Hydrocarbon, MW=256-258 4.1 0 4.1 0.0 100.03.5-stigmastadiene 5 1.7 3.3 34.0 66.0
β-sitosterol 1 0.4 0.6 40.0 60.0 As esters 22.8 22.8 0 100.0 0.0Dehydroabietic methyl ester 0 0 0 0.0 0.0Abietic methyl ester 0 0 0 0.0 0.0Pimarol 2 2 0 100.0 0.0Docosanol 1.2 1.2 0 100.0 0.0Tatracosanol 1.1 1.1 0 100.0 0.0
β-sitostearate 18.5 18.5 0 100.0 0.0Total 676 58.1 618 8.6 91.4Pitch, unidentified 222 197 25 88.739 11.3 Pitch / HeadsFraction yield, kg/t CTO 1000 293 686 29.3 68.6% identified 67.6 19.8 90.1% 89.8 87.1 93.7

Pimaric acid

Abietic acid

Neoabietic acid

Palmitic acid

Oleic acid

Pitch

Pitch

Heads

Sitosterol

Appendix 3: Tall oil model



PROJECT: Thesis models 1 000 000 ADt/a Mikko NiemeläinenALTERNATIVE: Case: Tall oil Depitching 11.4.2018

ENERGY BALANCES
Design Production ADt/d 3 175Average Production ADt/d 2 857Operational days 350Daily Production ADt/d 1 000 000

HEAT CONSUMPTION Dept. Specific Heat Steam Cond.Steam Production Consumption Flow Flow Flowt/d GJ/Ut GJ/ADt      % Deg.C  MJ/s  kg/s  kg/s
Woodhandling, m3 sub/d LP 14 662 0.00 0.00 0 0 0.0 0.00 0.0Cooking MP1 3 086 1.68 1.81 22 100 60.0 22.08 4.9Cooking LP 3 086 0.00 0.00 0 0 0.0 0.00 0.0O2 delignification MP1 2 948 0.18 0.19 0 0 6.1 2.19 0.0O2 delignification LP 2 948 0.40 0.41 0 0 13.6 4.95 0.0Bleaching MP1 2 860 0.06 0.06 0 0 2.0 0.71 0.0Bleaching LP 2 860 0.19 0.19 0 0 6.2 2.23 0.0Drying machine LP 2 857 2.50 2.50 85 98 82.7 34.29 29.1ClO2 plant MP1 36 8.50 0.11 0 0 3.5 1.26 0.0ClO2 plant LP 36 25.00 0.32 100 100 10.4 4.45 4.4Evaporation plant, tH2O/h MP1 1 140 2.00 0.80 100 100 26.4 11.04 11.0Evaporation plant, tH2O/h LP 1 140 8.00 3.19 100 100 105.6 45.09 45.1Causticizing/Lime kiln MP1 11 316 0.00 0.00 0 0 0.0 0.00 0.0Causticizing/Lime kiln LP 11 316 0.00 0.00 0 0 0.0 0.00 0.0Recovery boiler, sootblowing MP2 5 091 0.32 0.57 0 0 18.9 6.05 0.0Recovery boiler MP2 5 091 0.00 0.00 100 145 0.0 0.00 0.0Recovery boiler MP1 5 091 0.26 0.46 90 145 15.3 6.78 6.1Recovery boiler LP 5 091 0.33 0.59 100 145 19.4 9.05 9.0Biomass boiler, t/h LP 1 816 0.02 0.01 100 100 0.5 0.21 0.2Tall oil refining (acidulation) LP 141 0.63 0.03 0 0 1.0 0.37 0.0Tall oil refining (depitching) MP3 98 0.80 0.03 100 100 0.9 0.4 0.4Pulp Mill Common MP1 2 857 0.10 0.10 0 100 3.3 1.18 0.0Pulp Mill Common LP 2 857 0.10 0.10 0 100 3.3 1.20 0.0
Total (including chemical plant) MP3 0.03 100 100.00 0.9 0.4 0.4MP2 0.57 0 0.00 18.9 6.1 0.0MP1 3.53 49 112.48 116.7 45.2 22.0LP 7.34 86 103.97 242.7 101.8 87.9TOTAL 11.47 72 105.65 379.2 153.5 110.3
FEEDWATER LP 21.7LP Heater LP 100 104 16.2 16.2Condensing TG 100 44 88.7 88.7

STEAM & WATER PROPERTIES MAKE-UP WATER DEMAND kg/sbar(abs) Deg.C
Recovery Boiler 102.00 505 Steam from boilers 278.7Biofuel Boiler 102.00 505 Steam desuperheating 1.4Steam to Turbine 99.00 505 Feedwater from fw tank 280.1MP3 99.00 320 Mill condensate return 126.5MP2 steam 30.00 350 Condenser condensate return 88.7MP1 steam 11.00 195 Feedwater preheat 21.7LP steam 4.50 155 Make-up water demand 43.2
LP heater pressure 1.20Condenser pressure 0.090 SOOTBLOWINGCondenser 0.03FW in tank 143.5 Internal sootblowing steam 0.0 kg/sFW for RB boiler 145FW for Biofuel Boiler 145Demi water 25 NCG BOILERHeated condensate & Demin. Water 102 NCG incinerationSteam generation 0.00 kg/s0.0 MJ/s

Condensatereturn

1(2) 13.6.2018

Appendix 4: Mill energy balance for Depitching



PROJECT: Thesis models 1 000 000 ADt/a Mikko NiemeläinenALTERNATIVE: Case: Tall oil Depitching 11.4.2018

HEAT GENERATION
RECOVERY BOILER
Dry solids ratio tDS/Adt 1.782Dry solids (virgin) tDS/d 5 091Heat value, higher GJ/tDS 14.0Efficiency % 75.8
BIOFUEL BOILER

Biomass 1 Biomass 2 Biomass 3
Bark Wood Rejects Pulp Rejects

Fuel flow tDS/d 730.0 149.0 13.7t/d 1460 310 46GJ/d as fired 12 045 2 383 126Dry solids content %ds 50.0 48.0 30.0
Heat value, effective GJ/tds 19.0 18.7 15.0GJ/t 8.3 7.7 2.8Efficiency % 87.0 87.0 87.0

HEAT FROM BOILERS GJ/Adt MJ/s kg/s t/hBlack Liquor (incl. methanol and CNCG) 18.9 624.9 225.8 812.8 260.80
Biofuel 4.4 146.5 53.0 190.6Total 23.3 771.5 278.7 1003.4
HEAT BALANCE GJ/Adt    MJ/s
Heat Generation-  Black liquor 18.9 624.9
-  Biofuel 4.4 146.5-  In feedwater pumps 0.1 3.8Total 23.4 775.2
Heat Consumption-  Pulp mill process 11.5 379.2-  BP power generation 3.6 118.2 0.98-  Cond. power generation 8.4 277.9Total 23.4 775.3
POWER BALANCE
POWER CONSUMPTION D E S I G NDesign Specif. Specif. Balance Specif. Powerproduction cons. cons. production cons. cons.t/d kWh/Ut kWh/ADt t/d kWh/ADt kW
Wood handling m3/sub d 18 328 4.0 23.1 14 662 24 2 841Cooking Adt/d 3 429 27.0 29.2 3 086 31 3 684O2 delignification and bleaching Adt/d 3 178 88.0 88.1 2 860 93 11 128Drying machine Adt/d 3 361 100.0 105.9 2 857 110 13 060
Evaporation Plant th2O/h 1 267 74.0 29.5 1 140 32 3 788
Recausticizing plant & Lime kiln m3WL/d 12 573 6.5 25.7 11 316 27 3 252Recovery Boiler tDS/d 5 657 46.0 82.0 5 091 87 10 354Biomass Boiler tsteam/d 5 083 18.0 28.8 4 575 31 3 641
Raw water treatment m3/d 79 365 0.1 1.3 71 429 1.3 158Raw water intake l/s 79 365 0.1 1.3 71 429 1 158Demineralizing plant m3/d 5 104 0.5 0.8 4 594 1 102Effluent treatment m3/d 63 492 1.0 20.0 57 143 21 2 526Cooling water, tower & pumps m3/d 536 851 0.3 42.3 483 166 45 5 341Turbine plant Adt/d 3 175 1.0 1.0 2 857 1 126Compressed air Adt/d 3 175 8.0 8.0 2 857 8 1 011Chiller for AC Adt/d 3 175 8.0 8.0 2 857 8 1 011Pulp mill common Adt/d 3 175 12.0 12.0 2 857 13 1 516Tall oil acidulation t/d 157 27.3 1.3 141 1 170Tall oil depitching t/d 109 9.5 0.3 98 0 42Oxygen plant tO2/d 116 560.0 20.4 104.1 22 2 577ClO2-plant tClO2/d 42 9170.0 122.3 36 129.8 15 454
PULP MILL TOTAL 651 688 81 900
POWER GENERATION kWh/ADt MW
TG1 959 114.2 2.7TG2 881 104.9 2.5Total from turbogenerators 1 840 219.1 5.3
POWER BALANCE kWh/ADt MW
Power consumption 688 81.9 2.0Power generation 1 840 219.1 5.3Power sales 1 152 137.2 3
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Appendix 5: Electricity generation and steamdistribution for the depitching case



PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Conventional mill Average                       3.4.2018

ENERGY BALANCES
Design Production ADt/d 3 175Average Production ADt/d 2 857Operational days 350Daily Production ADt/d 1 000 000

HEAT CONSUMPTION Dept. Specific Heat Steam Cond.Steam Production Consumption Flow Flow Flowt/d GJ/Ut GJ/ADt      % Deg.C  MJ/s  kg/s  kg/s
Woodhandling, m3 sub/d LP 14 662 0.00 0.00 0 0 0.0 0.00 0.0Cooking MP1 3 086 1.68 1.81 22 100 60.0 22.08 4.9Cooking LP 3 086 0.00 0.00 0 0 0.0 0.00 0.0O2 delignification MP1 2 948 0.18 0.19 0 0 6.1 2.19 0.0O2 delignification LP 2 948 0.40 0.41 0 0 13.6 4.95 0.0Bleaching MP1 2 860 0.06 0.06 0 0 2.0 0.71 0.0Bleaching LP 2 860 0.19 0.19 0 0 6.2 2.23 0.0Drying machine LP 2 857 2.50 2.50 85 98 82.7 34.29 29.1ClO2 plant MP1 36 8.50 0.11 0 0 3.5 1.26 0.0ClO2 plant LP 36 25.00 0.32 100 100 10.4 4.45 4.4Evaporation plant, tH2O/h MP1 1 140 2.00 0.80 100 100 26.4 11.04 11.0Evaporation plant, tH2O/h LP 1 140 8.00 3.19 100 100 105.6 45.09 45.1Causticizing/Lime kiln MP1 11 316 0.00 0.00 0 0 0.0 0.00 0.0Causticizing/Lime kiln LP 11 316 0.00 0.00 0 0 0.0 0.00 0.0Recovery boiler, sootblowing MP2 5 091 0.32 0.57 0 0 18.9 6.05 0.0Recovery boiler MP2 5 091 0.00 0.00 100 145 0.0 0.00 0.0Recovery boiler MP1 5 091 0.26 0.46 90 145 15.3 6.78 6.1Recovery boiler LP 5 091 0.33 0.59 100 145 19.4 9.05 9.0Biomass boiler LP 1 816 0.02 0.01 100 100 0.5 0.21 0.2Tall oil acidulation LP 141 0.63 0.03 0 0 1.0 0.37 0.0Pulp Mill Common MP1 2 857 0.10 0.10 0 100 3.3 1.18 0.0Pulp Mill Common LP 2 857 0.10 0.10 0 100 3.3 1.20 0.0
Total MP3 0.00 0 0.00 0.0 0.0 0.0MP2 0.57 0 0.00 18.9 6.1 0.0MP1 3.53 49 112.48 116.7 45.2 22.0LP 7.34 86 103.97 242.7 101.8 87.9TOTAL 11.44 72 105.67 378.2 153.1 109.9
FEEDWATER LP 21.8LP Heater LP 100 104 16.3 16.3Condensing TG 100 44 89.3 89.3

STEAM & WATER PROPERTIES MAKE-UP WATER DEMAND kg/sbar(abs) Deg.CRecovery Boiler 102.00 505 Steam from boilers 278.7Biofuel Boiler 102.00 505 Steam desuperheating 1.6Steam to Turbine 99.00 505 Feedwater from fw tank 280.3MP3 steam 99.00 320 Mill condensate return 126.2MP2 steam 30.00 350 Condenser condensate return 89.3MP1 steam 11.00 195 Feedwater preheat 21.8LP steam 4.50 155 Make-up water demand 43.0
LP heater pressure 1.20
Condenser pressure 0.090 SOOTBLOWINGCondenser 0.03FW in tank 143.5 Internal sootblowing steam 0.0 kg/sFW for RB boiler 145FW for Biofuel Boiler 145Demi water 25 NCG BOILERHeated condensate & Demin. Water 102

NCG incinerationSteam generation 0.00 kg/s0.0 MJ/s

Condensatereturn

Mikko Niemeläinen
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Appendix 6: Mill energy balance for Conventional Case



Mikko Niemeläinen

HEAT GENERATION
RECOVERY BOILER
Dry solids ratio tDS/Adt 1.782Dry solids (virgin) tDS/d 5 091Heat value, higher GJ/tDS 14.0Efficiency % 75.8
BIOFUEL BOILER

Biomass 1 Biomass 2 Biomass 3 Biomass 4
Bark Wood Rejects Pulp Rejects

Fuel flow tDS/d 730.0 149.0 13.7 0.0t/d 1460 310 46 0GJ/d as fired 12 045 2 383 126 0Dry solids content %ds 50.0 48.0 30.0 75.0
Heat value, effective GJ/tds 19.0 18.7 15.0 11.1GJ/t 8.3 7.7 2.8 7.7Efficiency % 87.0 87.0 87.0 87.0

HEAT FROM BOILERS GJ/Adt MJ/s kg/s t/hBlack Liquor (incl. methanol and CNCG) 18.9 624.9 225.8 812.8 260.80
Biofuel 4.4 146.5 53.0 190.6Total 23.3 771.5 278.7 1003.4
HEAT BALANCE GJ/Adt    MJ/s
Heat Generation-  Black liquor 18.9 624.9
-  Biofuel 4.4 146.5-  In feedwater pumps 0.1 3.8Total 23.4 775.2
Heat Consumption-  Pulp mill process 11.4 378.2-  BP power generation 3.6 117.9 0.98-  Cond. power generation 8.4 279.2Total 23.4 775.3
POWER BALANCE
POWER CONSUMPTION D E S I G N B A L A N C EDesign Specif. Specif. Balance Specif. Powerproduction cons. cons. production cons. cons.t/d kWh/Ut kWh/ADt t/d kWh/ADt kW
Wood handling m3/sub d 18 328 4.0 23.1 14 662 24 2 841Cooking Adt/d 3 429 27.0 29.2 3 086 31 3 684O2 delignification and bleaching Adt/d 3 178 88.0 88.1 2 860 93 11 128Drying machine Adt/d 3 361 100.0 105.9 2 857 110 13 060Evaporation Plant th2O/h 1 267 74.0 29.5 1 140 32 3 788
Recausticizing plant & Lime kiln m3WL/d 12 573 6.5 25.7 11 316 27 3 252Recovery Boiler tDS/d 5 657 46.0 82.0 5 091 87 10 354
Biomass Boiler t/d 2 018 45.3 28.8 1 816 31 3 641Raw water treatment m3/d 79 365 0.1 1.3 71 429 1.3 158Raw water intake l/s 79 365 0.1 1.3 71 429 1 158Demineralizing plant m3/d 5 091 0.5 0.8 4 582 1 101Effluent treatment m3/d 63 492 1.0 20.0 57 143 21 2 526Cooling water, tower & pumps m3/d 539 193 0.3 42.5 485 274 45 5 364Turbine plant Adt/d 3 175 1.0 1.0 2 857 1 126Compressed air Adt/d 3 175 8.0 8.0 2 857 8 1 011Chiller for AC Adt/d 3 175 8.0 8.0 2 857 8 1 011Pulp mill common Adt/d 3 175 12.0 12.0 2 857 13 1 516Tall oil acidulation t/d 157 27.3 1.3 141 1 170Oxygen plant tO2/d 116 560.0 20.4 104 22 2 577ClO2-plant tClO2/d 42 9170.0 122.3 36 129.8 15 454
PULP MILL TOTAL 651 688 81 900
POWER GENERATION kWh/ADt MW
TG1 880 104.8 2.5TG2 965 114.9 2.8Total from turbogenerators 1 845 219.7 5.3
POWER BALANCE kWh/ADt MW
Power consumption 688 81.9 2.0Power generation 1 845 219.7 5.3Power sales 1 157 137.8 3
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PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Conventional mill Average                       3.4.2018



PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Bark gasification 3.4.2018

ENERGY BALANCES
Design Production ADt/d 3 175Average Production ADt/d 2 857Operational days 350Daily Production ADt/d 1 000 000

HEAT CONSUMPTION Dept. Specific Heat Steam Cond.Steam Production Consumption Flow Flow Flowt/d GJ/Ut GJ/ADt      % Deg.C  MJ/s  kg/s  kg/s
Woodhandling, m3 sub/d LP 14 662 0.00 0.00 0 0 0.0 0.00 0.0Cooking MP1 3 086 1.68 1.81 22 100 60.0 22.08 4.9Cooking LP 3 086 0.00 0.00 0 0 0.0 0.00 0.0O2 delignification MP1 2 948 0.18 0.19 0 0 6.1 2.19 0.0O2 delignification LP 2 948 0.40 0.41 0 0 13.6 4.95 0.0Bleaching MP1 2 860 0.06 0.06 0 0 2.0 0.71 0.0Bleaching LP 2 860 0.19 0.19 0 0 6.2 2.23 0.0Drying machine LP 2 857 2.50 2.50 85 98 82.7 34.29 29.1ClO2 plant MP1 36 8.50 0.11 0 0 3.5 1.26 0.0ClO2 plant LP 36 25.00 0.32 100 100 10.4 4.45 4.4Evaporation plant, tH2O/h MP1 1 140 2.00 0.80 100 100 26.4 11.04 11.0Evaporation plant, tH2O/h LP 1 140 8.00 3.19 100 100 105.6 45.09 45.1Causticizing/Lime kiln MP1 11 655 0.00 0.00 0 0 0.0 0.00 0.0Causticizing/Lime kiln LP 11 655 0.00 0.00 0 0 0.0 0.00 0.0Recovery boiler, sootblowing MP2 5 091 0.32 0.57 0 0 18.9 6.05 0.0Recovery boiler MP2 5 091 0.00 0.00 100 145 0.0 0.00 0.0Recovery boiler MP1 5 091 0.26 0.46 90 145 15.3 6.78 6.1Recovery boiler LP 5 091 0.33 0.59 100 145 19.4 9.05 9.0Biomass boiler LP 1 077 0.02 0.01 100 100 0.3 0.12 0.1Tall oil acidulation LP 141 0.63 0.03 0 0 1.0 0.37 0.0Pulp Mill Common MP1 2 857 0.10 0.10 0 100 3.3 1.18 0.0Pulp Mill Common LP 2 857 0.10 0.10 0 100 3.3 1.20 0.0Bark Drying & Gasification, wet bark LP 666 2.10 0.49 100 100 16.2 6.90 6.9Total MP3 0.00 0 0.00 0.0 0.0 0.0MP2 0.57 0 0.00 18.9 6.1 0.0MP1 3.53 49 112.48 116.7 45.2 22.0LP 7.82 87 96.40 258.7 108.6 94.8TOTAL 11.92 73 99.43 394.2 159.9 116.8
FEEDWATER LP 19.9LP Heater LP 100 104 13.5 13.5Condensing TG 100 44 64.9 64.9

STEAM & WATER PROPERTIES MAKE-UP WATER DEMAND kg/sbar(abs) Deg.CRecovery Boiler 102.00 505 Steam from boilers 256.6Biofuel Boiler 102.00 505 Steam desuperheating 1.7Steam to Turbine 99.00 505 Feedwater from fw tank 258.2MP3 steam 99.00 320 Mill condensate return 130.3MP2 steam 30.00 350 Condenser condensate return 64.9MP1 steam 11.00 195 Feedwater preheat 19.9LP steam 4.50 155 Make-up water demand 43.1
LP heater pressure 1.20
Condenser pressure 0.090 SOOTBLOWINGCondenser 0.03FW in tank 143.5 Internal sootblowing steam 0.0 kg/sFW for RB boiler 145FW for Biofuel Boiler 145Demi water 25 NCG BOILERHeated condensate & Demin. Water 102

NCG incinerationSteam generation 0.00 kg/s0.0 MJ/s

Condensatereturn

Mikko Niemeläinen
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Appendix 7: Mill energy balance for Bark gasification



PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Bark gasification 3.4.2018Mikko Niemeläinen

HEAT GENERATION
RECOVERY BOILER
Dry solids ratio tDS/Adt 1.782Dry solids (virgin) tDS/d 5 091Heat value, higher GJ/tDS 14.0Efficiency % 75.8
BIOFUEL BOILER

Biomass 1 Biomass 2 Biomass 3 Biomass 4
Bark Wood Rejects Pulp Rejects

Fuel flow tDS/d 360.5 149.0 13.7 0.0t/d 721 310 46 0GJ/d as fired 5 948 2 383 126 0Dry solids content %ds 50.0 48.0 30.0 75.0
Heat value, effective GJ/tds 19.0 18.7 15.0 11.1GJ/t 8.3 7.7 2.8 7.7Efficiency % 87.0 87.0 87.0 87.0

HEAT FROM BOILERS GJ/Adt MJ/s kg/s t/hBlack Liquor (incl. methanol and CNCG) 18.9 624.9 225.8 812.8 260.80
Biofuel 2.6 85.2 30.8 110.8Total 21.5 710.1 256.6 923.6
HEAT BALANCE GJ/Adt    MJ/s
Heat Generation-  Black liquor 18.9 624.9-  Biofuel 2.6 85.2-  In feedwater pumps 0.1 3.5Total 21.6 713.5
Heat Consumption-  Pulp mill process 11.9 394.2-  BP power generation 3.5 117.1 0.97-  Cond. power generation 6.1 202.2Total 21.6 713.5
POWER BALANCE
POWER CONSUMPTION D E S I G N B A L A N C EDesign Specif. Specif. Balance Specif. Powerproduction cons. cons. production cons. cons.t/d kWh/Ut kWh/ADt t/d kWh/ADt kWWood handling m3/sub d 18 328 4.0 23.1 14 662 24 2 841Cooking Adt/d 3 429 27.0 29.2 3 086 31 3 684O2 delignification and bleaching Adt/d 3 178 88.0 88.1 2 860 93 11 128Drying machine Adt/d 3 361 100.0 105.9 2 857 110 13 060
Evaporation Plant th2O/h 1 267 74.0 29.5 1 140 32 3 788
Recausticizing plant & Lime kiln m3WL/d 12 950 6.5 26.5 11 655 28 3 349Recovery Boiler tDS/d 5 657 46.0 82.0 5 091 87 10 354Biomass Boiler t/d 1 197 44.6 16.8 1 077 18 2 122Raw water treatment m3/d 79 365 0.1 1.3 71 429 1.3 158Raw water intake l/s 79 365 0.1 1.3 71 429 1 158Demineralizing plant m3/d 5 098 0.5 0.8 4 589 1 101Effluent treatment m3/d 63 492 1.0 20.0 57 143 21 2 526Cooling water, tower & pumps m3/d 443 948 0.3 35.0 399 553 37 4 416Turbine plant Adt/d 3 175 1.0 1.0 2 857 1 126Compressed air Adt/d 3 175 8.0 8.0 2 857 8 1 011Chiller for AC Adt/d 3 175 8.0 8.0 2 857 8 1 011Pulp mill common Adt/d 3 175 12.0 12.0 2 857 13 1 516Tall oil acidulation t/d 157 27.3 1.3 141 1 170Oxygen plant tO2/d 116 560.0 20.4 104.1 22 2 577ClO2-plant tClO2/d 42 9170.0 122.3 36 129.8 15 454Bark drying & Gasification t/d, wet bark 821 36.6 9.5 739 10.2 1 209
PULP MILL TOTAL 642 678 80 800
POWER GENERATION kWh/ADt MW
TG1 805 95.8 2.3TG2 804 95.7 2.3Total from turbogenerators 1 609 191.5 4.6
POWER BALANCE kWh/ADt MW
Power consumption 678 80.8 1.9Power generation 1 609 191.5 4.6Total 930 110.7 3
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PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Combined depitching and bark gasification 11.4.2018

ENERGY BALANCES
Design Production ADt/d 3 175Average Production ADt/d 2 857350Daily Production ADt/d 1 000 000

HEAT CONSUMPTION Dept. Specific Heat Steam Cond.Steam Production Consumption Flow Flow Flowt/d GJ/Ut GJ/ADt      % Deg.C  MJ/s  kg/s  kg/s
Woodhandling, m3 sub/d LP 14 662 0.00 0.00 0 0 0.0 0.00 0.0Cooking MP1 3 086 1.68 1.81 22 100 60.0 22.08 4.9Cooking LP 3 086 0.00 0.00 0 0 0.0 0.00 0.0O2 delignification MP1 2 948 0.18 0.19 0 0 6.1 2.19 0.0O2 delignification LP 2 948 0.40 0.41 0 0 13.6 4.95 0.0Bleaching MP1 2 860 0.06 0.06 0 0 2.0 0.71 0.0Bleaching LP 2 860 0.19 0.19 0 0 6.2 2.23 0.0Drying machine LP 2 857 2.50 2.50 85 98 82.7 34.29 29.1ClO2 plant MP1 36 8.50 0.11 0 0 3.5 1.26 0.0ClO2 plant LP 36 25.00 0.32 100 100 10.4 4.45 4.4Evaporation plant, tH2O/h MP1 1 140 2.00 0.80 100 100 26.4 11.04 11.0Evaporation plant, tH2O/h LP 1 140 8.00 3.19 100 100 105.6 45.09 45.1Causticizing/Lime kiln MP1 11 316 0.00 0.00 0 0 0.0 0.00 0.0Causticizing/Lime kiln LP 11 316 0.00 0.00 0 0 0.0 0.00 0.0Recovery boiler, sootblowing MP2 5 091 0.32 0.57 0 0 18.9 6.05 0.0Recovery boiler MP2 5 091 0.00 0.00 100 145 0.0 0.00 0.0Recovery boiler MP1 5 091 0.26 0.46 90 145 15.3 6.78 6.1Recovery boiler LP 5 091 0.33 0.59 100 145 19.4 9.05 9.0Biomass boiler LP 1 340 0.02 0.01 100 100 0.4 0.15 0.2Tall oil acidulation LP 141 0.63 0.03 0 0 1.0 0.37 0.0Tall oil refining (depitching) MP3 98 0.80 0.03 100 100 0.9 0.37 0.4Pulp Mill Common MP1 2 857 0.10 0.10 0 100 3.3 1.18 0.0Pulp Mill Common LP 2 857 0.10 0.10 0 100 3.3 1.20 0.0Bark Drying & Gasification, wet bark LP 476 1.89 0.31 100 100 10.4 4.45 4.4Total MP3 0.03 100 100.00 0.9 0.4 0.4MP2 0.57 0 0.00 18.9 6.1 0.0MP1 3.53 49 112.48 116.7 45.2 22.0LP 7.65 87 98.96 253.0 106.2 92.3TOTAL 11.78 73 101.56 389.4 157.9 114.7
FEEDWATER LP 20.6LP Heater LP 100 104 14.5 14.5Condensing TG 100 44 73.0 73.0

STEAM & WATER PROPERTIES MAKE-UP WATER DEMAND kg/sbar(abs) Deg.C
Recovery Boiler 102.00 505 Steam from boilers 264.4Biofuel Boiler 102.00 505 Steam desuperheating 1.4Steam to Turbine 99.00 505 Feedwater from fw tank 265.8MP3 99.00 320 Mill condensate return 129.2MP2 steam 30.00 350 Condenser condensate return 73.0MP1 steam 11.00 195 Feedwater preheat 20.6LP steam 4.50 155 Make-up water demand 43.1
LP heater pressure 1.20Condenser pressure 0.090 SOOTBLOWINGCondenser 0.03FW in tank 143.5 Internal sootblowing steam 0.0 kg/sFW for RB boiler 145FW for Biofuel Boiler 145Demi water 25 NCG BOILERHeated condensate & Demin. Water 102 NCG incinerationSteam generation 0.00 kg/s0.0 MJ/s

Condensatereturn

Mikko Niemeläinen

1(2)

Appendix 8: Mill energy balance for combined Depitching and Gasification



PROJECT: Thesis models 1 000 000 ADt/aALTERNATIVE: Case: Combined depitching and bark gasification 11.4.2018Mikko Niemeläinen

HEAT GENERATION
RECOVERY BOILER
Dry solids ratio tDS/Adt 1.782Dry solids (virgin) tDS/d 5 091Heat value, higher GJ/tDS 14.0Efficiency % 75.8
BIOFUEL BOILER

Biomass 1 Biomass 2 Biomass 3 Biomass 4
Bark Wood Rejects Pulp Rejects

Fuel flow tDS/d 492.0 149.0 13.7 0.0t/d 984 310 46 0GJ/d as fired 8 118 2 383 126 0Dry solids content %ds 50.0 48.0 30.0 75.0
Heat value, effective GJ/tds 19.0 18.7 15.0 11.1GJ/t 8.3 7.7 2.8 7.7Efficiency % 87.0 87.0 87.0 87.0

HEAT FROM BOILERS GJ/Adt MJ/s kg/s t/hBlack Liquor (incl. methanol and CNCG) 18.9 624.9 225.8 812.8 260.80
Biofuel 3.2 107.0 38.7 139.2Total 22.1 731.9 264.4 952.0

HEAT BALANCE
GJ/Adt    MJ/s

Heat Generation-  Black liquor 18.9 624.9
-  Biofuel 3.2 107.0-  In feedwater pumps 0.1 3.6Total 22.2 735.5
Heat Consumption-  Pulp mill process 11.8 389.4-  BP power generation 3.6 117.9 0.97-  Cond. power generation 6.9 228.2Total 22.2 735.5
POWER BALANCE
POWER CONSUMPTION D E S I G N B A L A N C EDesign Specif. Specif. Balance Specif. Powerproduction cons. cons. production cons. cons.t/d kWh/Ut kWh/ADt t/d kWh/ADt kW
Wood handling m3/sub d 18 328 4.0 23.1 14 662 24 2 841Cooking Adt/d 3 429 27.0 29.2 3 086 31 3 684O2 delignification and bleaching Adt/d 3 178 88.0 88.1 2 860 93 11 128Drying machine Adt/d 3 361 100.0 105.9 2 857 110 13 060
Evaporation Plant th2O/h 1 267 74.0 29.5 1 140 32 3 788
Recausticizing plant & Lime kiln m3WL/d 12 573 6.5 25.7 11 316 27 3 252Recovery Boiler tDS/d 5 657 46.0 82.0 5 091 87 10 354Biomass Boiler t/d 1 489 44.9 21.0 1 340 22 2 658Raw water treatment m3/d 79 365 0.1 1.3 71 429 1.3 158Raw water intake l/s 79 365 0.1 1.3 71 429 1 158Demineralizing plant m3/d 5 093 0.5 0.8 4 584 1 101Effluent treatment m3/d 63 492 1.0 20.0 57 143 21 2 526Cooling water, tower & pumps m3/d 478 299 0.3 37.7 430 469 40 4 758Turbine plant Adt/d 3 175 1.0 1.0 2 857 1 126Compressed air Adt/d 3 175 8.0 8.0 2 857 8 1 011Chiller for AC Adt/d 3 175 8.0 8.0 2 857 8 1 011Pulp mill common Adt/d 3 175 12.0 12.0 2 857 13 1 516Tall oil acidulation t/d 157 27.3 1.3 141 1 170Tall oil depitching t/d 104 9.5 0.3 94 0 40Oxygen plant tO2/d 116 560.0 20.4 104.1 22 2 577ClO2-plant tClO2/d 42 9170.0 122.3 36 129.8 15 454Bark drying & Gasification t/d, wet bark 529 36.6 6.1 476 6.5 778
PULP MILL TOTAL 645 682 81 100
POWER GENERATION kWh/ADt MW
TG1 844 100.5 2.4TG2 846 100.7 2.4Total from turbogenerators 1 690 201.2 4.8
POWER BALANCE kWh/ADt MW
Power consumption 682 81.1 1.9Power generation 1 690 201.2 4.8Power sales 1 008 120.1 3
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Appendix 9: Investment cost breakdown of different scenarios
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