Skip to main content

Chemistry, Biological Activities, and Uses of Copaiba Oil Resins

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Copaiba oils are oleoresins naturally produced and exuded from the tree trunk of several species of the Copaifera genus, a Leguminosae. Like all natural oleoresins, it has a volatile and a resinous portion. In the case of copaiba oils, these portions are comprised of sesquiterpenes and diterpenes, respectively. Among the main sesquiterpenes present in copaiba oils of some Copaifera species are caryophyllene, humulene, and their derivatives. These molecules have potent anti-inflammatory properties and are present in commercial herbal medicines, for example, from Cordia verbenacea. Caryophyllene is currently one of the most important substances in copaiba oils, as it has shown activity in several pharmacological models, including cannabinoid receptors of the CB2 type. The ancestral uses of copaiba oils by people from Latin America for different applications have been confirmed in pharmacological and biotechnological studies. Its importance as a natural bioactive product has grown exponentially, especially with the recent discoveries of the properties of caryophyllene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Veiga Junior VF, Pinto AC (2002) O gênero Copaifera L. Quím Nova 25:273–286

    Article  CAS  Google Scholar 

  2. Leandro LM, de Sousa VF, Barbosa PCS, Neves JKO, Da Silva JA, Veiga-Junior D, Florêncio V (2012) Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. Molecules 17:3866–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rigamonte-Azevedo OC, Wadt PGS, de LHO W (2006) Potencial de produção de óleo-resina de copaíba (Copaifera spp) de populações naturais do sudoeste da Amazônia. Rev Árv 30:583–591

    Article  Google Scholar 

  4. da Silva MR, Vieira G (2008) Sustainability of extraction and production of copaiba (Copaifera multijuga Hayne) oleoresin in Manaus, AM, Brazil. For Ecol Manag 256:282–288

    Article  Google Scholar 

  5. da Silva MR, Vieira G, de Almeida DRA, Fo MT (2018) New information for managing Copaifera multijuga Hayne for oleoresin yield. For Ecol Manag 414:85–98

    Article  Google Scholar 

  6. Diefenbach AL, Muniz F, Oballe HJR, Rosing CK (2018) Antimicrobial activity of copaiba oil (Copaifera ssp.) on oral pathogens: Systematic review. Phytother Res 32:586–596

    Article  CAS  PubMed  Google Scholar 

  7. da Trindade R, da Silva JK, Setzer WN (2018) Copaifera of the neotropics: a review of the phytochemistry and pharmacology. Int J Mol Sci 19:1511

    Article  PubMed Central  Google Scholar 

  8. Custódio DL, Veiga-Junior VF (2012) True and common balsams. Rev Bras Farmacog 22:1372–1383

    Article  Google Scholar 

  9. Junior VV, Rosas E, Carvalho MV, Henriques MGMO, Pinto AC (2007) Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne—a comparative study. J Ethnopharmacol 112:248–254

    Article  Google Scholar 

  10. Barbosa P, Medeiros RS, Sampaio PT, Vieira G, Wiedemann LS, Veiga-Junior VF (2012) Influence of abiotic factors on the chemical composition of copaiba oil (Copaifera multijuga Hayne): soil composition, seasonality and diameter at breast height. J Braz Chem Soc 23:1823–1833

    Article  CAS  Google Scholar 

  11. Souza Barbosa PC, Moreira Wiedemann LS, da Silva MR, de Tarso Barbosa Sampaio P, Vieira G, Florencio da Veiga-Junior V (2013) Phytochemical fingerprints of copaiba oils (Copaifera multijuga Hayne) determined by multivariate analysis. Chem Biodivers 10:1350–1360

    Article  CAS  PubMed  Google Scholar 

  12. Galúcio CS, Benites CI, Rodrigues RA, Maciel MRW (2016) Sesquiterpenes recovery of copaiba oil-resin from molecular distillation. Quím Nova 39:795–800

    Google Scholar 

  13. Ribeiro VP, Arruda C, da Silva JJM, Aldana Mejia JA, Furtado NAJC, Bastos JK (2019) Use of spinning band distillation equipment for fractionation of volatile compounds of Copaifera oleoresins for developing a validated gas chromatographic method and evaluating antimicrobial activity. Biomedic Chrom 33:1–12

    Google Scholar 

  14. Souza FC, Brito LF, Silva MT, Sugimoto MA, ACS P, Almeida P, Souza RO, Costa RA, Guilhon-Simplicio F, Wanderley AG (2020) Synthesis, characterization and in vitro, in vivo and in silico anti-inflammatory studies of the novel hybrid based on ibuprofen and 3-hydroxy-copalic acid isolated from copaiba oil (Copaifera multijuga). J Braz Chem Soc 31:1335–1344

    Google Scholar 

  15. Cascon V, Gilbert B (2000) Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne. Phytochemistry 55:773–778

    Article  CAS  PubMed  Google Scholar 

  16. Dewick PM (2002) Medicinal natural products: a biosynthetic approach. J. W. Sons, Nova Jersey

    Google Scholar 

  17. Schreiner O (1904) The Sesquiterpenes: a monograph. P. ReviewPublishing Company, Auckland

    Google Scholar 

  18. Ansari H, Curtis A (1974) Sesquiterpenes in the perfumery industry. J Soc Cosmet Chem 25:203–231

    CAS  Google Scholar 

  19. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  20. Kleinig H (1989) The role of plastids in isoprenoid biosynthesis. Annu Rev Plant Biol 40:39–59

    Article  CAS  Google Scholar 

  21. Hay RK, Waterman PG (1993) Volatile oil crops: their biology, biochemistry and production. Longman Scientific and Technical, Harlow

    Google Scholar 

  22. Neerman MF (2003) Sesquiterpene lactones: a diverse class of compounds found in essential oils possessing antibacterial and antifungal properties. Int J Aromather 13:114–120

    Article  Google Scholar 

  23. Simões CMO, Schenkel EP, de Mello JCP, Mentz LA, Petrovick PR (2016) Farmacognosia: do produto natural ao medicamento. Artmed Editora, Porto Alegre

    Google Scholar 

  24. Guenther A (2015) Tropospheric Chemistry and Composition: Biogenic Hydrocarbons (inc. isoprene). Academic Press, Cambridge

    Google Scholar 

  25. Brocksom TJ, Oliveira KT, Desiderá AL (2017) The chemistry of the sesquiterpene alkaloids. J Braz Chem Soc 28:933–942

    CAS  Google Scholar 

  26. de Lima MC, Cavalcante SF, Wiedemann LS, Veiga VF (2020) Caracterização e controle de qualidade de óleos de copaíba (Copaifera sp.) utilizando detecção de marcadores por fator de retenção relativa em HPTLC. Quím Nova 43:878–883

    Google Scholar 

  27. do Nascimento ME, MdGB Z, JEBP P, SKV B (2012) Chemical variability of the volatiles of Copaifera langsdorffii growing wild in the Southeastern part of Brazil. Biochem Syst Ecol 43:1–6

    Article  Google Scholar 

  28. Yang J, Li Z, Guo L, Du J, Bae H-J (2016) Biosynthesis of β-caryophyllene, a novel terpene-based high-density biofuel precursor, using engineered Escherichia coli. Renew Energy 99:216–223

    Article  CAS  Google Scholar 

  29. de Oliveira Neves JK, Apolinário AC, Saraiva KLA, da Silva DTC, Reis MYFA, de Lima Damasceno BPG, Pessoa A Jr, Galvão MAM, Soares LAL, da Veiga Júnior VF (2018) Microemulsions containing Copaifera multijuga Hayne oil-resin: challenges to achieve an efficient system for β-caryophyllene delivery. Ind Crop Prod 111:185–192

    Article  Google Scholar 

  30. Oser BL, Ford RA (1977) Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 10. GRAS substances. Food Technol 31:65–74

    Google Scholar 

  31. Gertsch J, Leonti M, Raduner S, Racz I, Chen J-Z, Xie X-Q, Altmann K-H, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci 105:9099–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bramley P (2002) Comprehensive natural products chemistry, Volume 2: Isoprenoids including Carotenoids and Steroids-DE Cane (Volume Editor), Pergamon, an Elsevier Science Imprint, Oxford, 1999, 446 pp. Phytochemistry 2:229–230

    Article  Google Scholar 

  33. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB (2007) Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236

    Article  CAS  PubMed  Google Scholar 

  34. Shelly TE, Nishimoto JI (2015) Exposure to the plant compound α-humulene reduces mating success in male Mediterranean fruit flies (Diptera: Tephritidae). An Entomol Soc Amer 108:215–221

    Article  CAS  Google Scholar 

  35. Legault J, Dahl W, Debiton E, Pichette A, Madelmont J-C (2003) Antitumor activity of balsam fir oil: production of reactive oxygen species induced by α-humulene as possible mechanism of action. Planta Med 69:402–407

    Article  CAS  PubMed  Google Scholar 

  36. Chaves JS, Leal PC, Pianowisky L, Calixto JB (2008) Pharmacokinetics and tissue distribution of the sesquiterpene alpha-humulene in mice. Planta Med 74:1678–1683

    Article  CAS  PubMed  Google Scholar 

  37. Mander L, Liu H-W (2010) Comprehensive natural products II: chemistry and biology. Elsevier

    Google Scholar 

  38. Pieri FA, Mussi MC, Moreira MAS (2009) Óleo de copaíba (Copaifera sp.): histórico, extração, aplicações industriais e propriedades medicinais. Rev Bras Plant Med 11:465–472

    Article  Google Scholar 

  39. Nakano T, Djerassi C (1961) Terpenoids. XLVI. 1 Copalic Acid. J Organomet Chem 26:167–173

    Article  CAS  Google Scholar 

  40. Izumi E, Ueda-Nakamura T, Veiga VF Jr, Pinto AC, Nakamura CV (2012) Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J Med Chem 55:2994–3001

    Article  CAS  PubMed  Google Scholar 

  41. Pinto AC, Braga WF, Rezende CM, Garrido F, Veiga VF Jr, Bergter L, Patitucci ML, Antunes OA (2000) Separation of acid diterpenes of Copaifera cearensis Huber ex Ducke by flash chromatography using potassium hydroxide impregnated silica gel. J Braz Chem Soc 11:355–360

    Article  CAS  Google Scholar 

  42. Lemos M, Santin JR, Mizuno CS, Boeing T, de Sousa JPB, Nanayakkara D, Bastos JK, de Andrade SF (2015) Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves. Rev Bras Farmacog 25:238–245

    Article  CAS  Google Scholar 

  43. Barbosa LTC, Vega MRG (2017) Diterpenos do Gênero Xylopia. Rev Virt Quím 9:4

    Google Scholar 

  44. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biochem Plants 24:1250–1319

    Google Scholar 

  45. Li R, Morris-Natschke SL, Lee KH (2016) Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep 33:1166–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sant’Anna BM, Fontes SP, Pinto AC, Rezende CM (2007) Characterization of woody odorant contributors in copaiba oil (Copaifera multijuga Hayne). J Braz Chem Soc 18:984–989

    Article  Google Scholar 

  47. Galúcio CS, Benites CI, Rodrigues RA, Maciel MRW (2016) Recuperação de sesquiterpenos do óleo-resina de copaíba a partir da destilação molecular. Quím Nova 39:795–800

    Google Scholar 

  48. Senedese JM, Rinaldi-Neto F, Furtado RA, Nicollela HD, de Souza LDR, Ribeiro AB, Ferreira LS, Magalhaes GM, Carlos IZ, da Silva JJM, Tavares DC, Kenupp Bastos J (2019) Chemopreventive role of Copaifera reticulata Ducke oleoresin in colon carcinogenesis. Biomed Pharmacother 111:331–337

    Article  CAS  PubMed  Google Scholar 

  49. Cavalcanti B, Costa-Lotufo L, Moraes M, Burbano R, Silveira E, Cunha K, Rao V, Moura D, Rosa R, Henriques J (2006) Genotoxicity evaluation of kaurenoic acid, a bioactive diterpenoid present in Copaiba oil. Food Chem Toxicol 44:388–392

    Article  CAS  PubMed  Google Scholar 

  50. Vitor J, Cleber G, Aparecida G (2020) Resistência bacteriana decorrente do uso inadequado de antibióticos. Rev Odont Cont 4:61–61

    Google Scholar 

  51. Gelmini F, Beretta G, Anselmi C, Centini M, Magni P, Ruscica M, Cavalchini A, Facino RM (2013) GC–MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int J Pharm 440:170–178

    Article  CAS  PubMed  Google Scholar 

  52. Bardají DKR, da Silva JJM, Bianchi TC, de Souza ED, de Oliveira PF, Leandro LF, Rogez HLG, Venezianni RCS, Ambrosio SR, Tavares DC (2016) Copaifera reticulata oleoresin: chemical characterization and antibacterial properties against oral pathogens. Anaerobe 40:18–27

    Article  PubMed  Google Scholar 

  53. Veiga VF Jr, Patitucci ML, Pinto AC (1997) Controle de autenticidade de óleos de copaíba comerciais por cromatografia gasosa de alta resolução. Quím Nova 20:612–615

    Article  CAS  Google Scholar 

  54. Vargas DS, de Almeida PDO, Aranha ESP, Boleti DA, Paula A, Newton P, De Vasconcellos MC, VFV J, Lima ES (2015) Biological activities and cytotoxicity of diterpenes from Copaifera spp. oleoresins. Molecules 20:6194–6210

    Article  CAS  PubMed Central  Google Scholar 

  55. Símaro GV, Lemos M, da Silva JJM, Ribeiro VP, Arruda C, Schneider AH, de Souza Wanderley CW, Carneiro LJ, Mariano RL, Ambrósio SR (2021) Antinociceptive and anti-inflammatory activities of Copaifera pubiflora Benth oleoresin and its major metabolite ent-hardwickiic acid. J Ethnopharmacol 271:113883

    Article  PubMed  Google Scholar 

  56. Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D (2020) Leishmanicidal potential of hardwickiic acid isolated from croton sylvaticus. Front Pharmacol 11:753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Sousa IP, Ferreira AG, Crotti AEM, Dos Santos RA, Kiermaier J, Kraus B, Heilmann J, Furtado NAJC (2020) New antifungal ent-labdane diterpenes against Candida glabrata produced by microbial transformation of ent-polyalthic acid. Bioorg Chem 95:103–560

    Google Scholar 

  58. Barbosa ALP, Wenzel-Storjohann A, Barbosa JD, Zidorn C, Peifer C, Tasdemir D, Çiçek SS (2019) Antimicrobial and cytotoxic effects of the Copaifera reticulata oleoresin and its main diterpene acids. J Ethnopharmacol 233:94–100

    Article  PubMed  Google Scholar 

  59. Nakamura MT, Endo EH, JPB S, Callejon DR, Ueda-Nakamura T, Dias Filho BP, Od F, Nakamura CV, Lopes NP (2017) Copaiba oil and its constituent copalic acid as chemotherapeutic agents against dermatophytes. J Braz Chem Soc 28:1377–1383

    CAS  Google Scholar 

  60. Sanchez-Mendoza ME, Reyes-Trejo B, De La Rosa L, Rodriguez-Silverio J, Castillo-Henkel C, Arrieta J (2008) Polyalthic acid isolated from Croton reflexifolius has relaxing effect in guinea pig tracheal smooth muscle. Pharm Biol 46:800–807

    Article  CAS  Google Scholar 

  61. Mauro M, De Grandis R, Campos M, Bauermeister A, Peccinini R, Pavan F, Lopes N, De Moraes N (2019) Acid diterpenes from Copaiba oleoresin (Copaifera langsdorffii): chemical and plasma stability and intestinal permeability using Caco-2 cells. J Ethnopharmacol 235:183–189

    Article  CAS  PubMed  Google Scholar 

  62. de Souza MGM, Leandro LF, da Silva MT, Abrão F, Veneziani RCS, Ambrosio SR, Martins CHG (2018) ent-Copalic acid antibacterial and anti-biofilm properties against Actinomyces naeslundii and Peptostreptococcus anaerobius. Anaerobe 52:43–49

    Article  CAS  PubMed  Google Scholar 

  63. Oliveira LC, Porto TS, Junior AHC, Santos MFC, Ramos HP, Braun GH, de Lima Paula LA, Bastos JK, Furtado NAJC, Parreira RLT (2020) Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochem 98:34–40

    Article  CAS  Google Scholar 

  64. Tincusi BM, Jimenez IA, Bazzocchi IL, Moujir LM, Mamani ZA, Barroso JP, Ravelo AG, Hernandez BV (2002) Antimicrobial terpenoids from the oleoresin of the Peruvian medicinal plant Copaifera paupera. Planta Med 68:808–812

    Article  CAS  PubMed  Google Scholar 

  65. Abrão F, Silva TS, Moura CL, Ambrósio SR, Veneziani RCS, de Paiva RE, Bastos JK, Martins CHG (2021) Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 11:1–13

    Article  Google Scholar 

  66. Souza AB, De Souza MG, Moreira MA, Moreira MR, Furtado NA, Martins CH, Bastos JK, Santos RA, Heleno VC, Ambrosio SR (2011) Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. Molecules 16:9611–9619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fonseca AP, Estrela FT, Moraes TS, Carneiro LJ, Bastos JK, Santos RA, Ambrósio SR, Martins CH, Veneziani R (2013) In vitro antimicrobial activity of plant-derived diterpenes against bovine mastitis bacteria. Molecules 18:7865–7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matos PM, Mahoney B, Chan Y, Day DP, Cabral MM, Martins CH, Santos RA, Bastos JK, Page PCB, Heleno VC (2015) New non-toxic semi-synthetic derivatives from natural diterpenes displaying anti-tuberculosis activity. Molecules 20:18264–18278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Silva AN, Soares ACF, Cabral MM, de Andrade AR, Silva M, Martins CH, Veneziani R, Ambrósio SR, Bastos JK, Heleno VC (2017) Antitubercular activity increase in labdane diterpenes from Copaifera oleoresin through structural modification. J Braz Chem Soc 28:1106–1112

    CAS  Google Scholar 

  70. Costa-Lotufo L, Cunha G, Farias P, Viana G, Cunha K, Pessoa C, Moraes M, Silveira E, Gramosa N, Rao V (2002) The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. Toxicon 40:1231–1234

    Article  CAS  PubMed  Google Scholar 

  71. Paiva L, Gurgel L, Silva R, Tomé A, Gramosa N, Silveira E, Santos F, Rao V (2002) Anti-inflammatory effect of kaurenoic acid, a diterpene from Copaifera langsdorffii on acetic acid-induced colitis in rats. Vasc Pharmacol 39:303–307

    Article  CAS  Google Scholar 

  72. Choi H, Ahn S, Lee BG, Chang I, Hwang JS (2005) Inhibition of skin pigmentation by an extract of Lepidium apetalum and its possible implication in IL-6 mediated signaling. Pigment Cell Res 18:439–446

    CAS  PubMed  Google Scholar 

  73. De Souza PA, Rangel LP, Oigman SS, Elias MM, Ferreira-Pereira A, De Lucas NC, Leitao GG (2010) Isolation of two bioactive diterpenic acids from Copaifera glycycarpa oleoresin by high-speed counter-current chromatography. Phytochem Anal 21:539–543

    Article  PubMed  Google Scholar 

  74. Cotoras M, Folch C, Mendoza L (2004) Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3β-hydroxy-kaurenoic acid. J Agric Food Chem 52:2821–2826

    Article  CAS  PubMed  Google Scholar 

  75. Santos AO, Izumi E, Ueda-Nakamura T, Dias-Filho BP, Veiga-Junior VF, Nakamura CV (2013) Antileishmanial activity of diterpene acids in copaiba oil. Mem Inst Oswaldo Cruz 108:59–64

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kuete V, Wabo GF, Ngameni B, Mbaveng AT, Metuno R, Etoa FX, Ngadjui BT, Beng VP, Meyer JJ, Lall N (2007) Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). J Ethnopharmacol 114:54–60

    Article  CAS  PubMed  Google Scholar 

  77. Cordeiro KW, Felipe JL, Malange KF, do Prado PR, de Oliveira Figueiredo P, Garcez FR, de Cassia Freitas K, Garcez WS, Toffoli-Kadri MC (2016) Anti-inflammatory and antinociceptive activities of Croton urucurana Baillon bark. J Ethnopharmacol 183:128–135

    Article  CAS  PubMed  Google Scholar 

  78. Mizuno CS, Souza AB, Tekwani BL, Ambrosio SR, Veneziani RC (2015) Synthesis and biological evaluation of polyalthic acid derivatives for the treatment of neglected diseases. Bioorg Med Chem Lett 25:5529–5531

    Article  CAS  PubMed  Google Scholar 

  79. Chibas LC, Cintra PP, Moreira MR, Goulart MO, Ambrósio SR, Veneziani RCS, Bastos JK, dos Santos RA (2019) Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells. Nat Prod Commun 14:1934578X19842702

    CAS  Google Scholar 

  80. Abrão F, Alves JA, Andrade G, de Oliveira PF, Ambrósio SR, Veneziani R, Tavares DC, Bastos JK, Martins CH (2018) Antibacterial effect of Copaifera duckei Dwyer oleoresin and its main diterpenes against oral pathogens and their cytotoxic effect. Front Microbiol 9:201

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The authors would like to acknowledge the financial support of Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and the National Council for Scientific and Technological Development (CNPq). The authors also acknowledge the Military Engineering Institute and the Federal University of Amazonas for their academic support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Lima, M.C.F., Ribeiro, R., Almeida e Silva, J.E., dos Santos Tavares, S.S., de Araujo, Y.C.D., da Veiga-Junior, V.F. (2022). Chemistry, Biological Activities, and Uses of Copaiba Oil Resins. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics