Skip to main content

Heliconias: Dramatic Flowers of the Tropics and Subtropics

  • Reference work entry
  • First Online:
Floriculture and Ornamental Plants

Abstract

Heliconias have long been popular horticulturally because of their showy inflorescences. Owing to their exotic shape and unusual posture, early explorers of the tropics introduced them to Europe with several species that became prized greenhouse specimens. They originally were classified as species of bananas because of their similar foliage. In 1771, Linnaeus established the new genus Heliconia, naming it after Helicon, a mountain in Greece, the home of Apollo and the muses. In tropical America, Heliconias are often called “wild bananas” or “tropical kings”; locally, they are often referred to as “false birds of paradise.” They are monophyletic genus comprises of about 380 species with high ornamental potential. Some controversy exists over the taxonomic status of this crop. The identification of genotypes mainly based on morphological characteristics generated synonyms, but it’s possible to differentiate genotypes and elucidate the origin of hybrids and triploids of Heliconia by means of chromosome counting, base-specific fluorochrome staining such as CMA (chromomycin A3) and DAPI (4′,6-diamidino-2-phenylindole), and FISH (fluorescence in situ hybridization). On the other hand, self-incompatibility (SI) is prominent in some populations of Central American Heliconia. The availability of long-distance pollinators (hummingbirds) and low daily flower output may promote outcrossing despite the scarcity of physiological self-incompatibility in these plants. Conclusively, based on variability and diversity study, few genotypes, viz., H. psittacorum × H. spathocircinata cv. ‘Golden Torch,’ H. psittacorum var. ‘Choconiana,’ H. psittacorum var. ‘Lady Di,’ and H. rostrata, found to be promising under Indian condition and may be considered as potential parents in future breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson GJ (1984) Chromosome number reports LXXXV. Taxon 33:756–760

    Article  Google Scholar 

  • Andersson L (1981a) Revision of Heliconia sect. Heliconia (Musaceae). Nord J Bot 1:759–784

    Article  Google Scholar 

  • Andersson L (1981b) The neotropical genera of Marantaceae: circumscription and relationships. Nord J Bot 1:218–245

    Article  Google Scholar 

  • Andersson L (1998) Heliconiaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Flowering plants monocotyledons, alismatanae and commelinanae (except Gramineae), vol 4. Springer, Berlin, pp 226–230

    Google Scholar 

  • Arroyo MTK (1979) Comments on breeding systems in neotropical forests. In: Larsen K, Holm-Nielson LB (eds) Tropical botany. Academic, New York, pp 371–380

    Google Scholar 

  • Bahubali MD, Singh A, Mahatma MK (2014) Post harvest physiology and quality of Heliconia inflorescence cv. ‘Golden Torch’ as influenced by antioxidants. Indian J Hortic 69:259–264

    Google Scholar 

  • Baker HG (1959) Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb Symp Quant Biol 24:177–191

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM et al (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Article  Google Scholar 

  • Bateman AJ (1956) Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L. Heredity 10:257–261

    Article  Google Scholar 

  • Bawa KS (1979) Breeding systems of tree species of a lowland tropical community. Evolution 28:85–92

    Article  Google Scholar 

  • Berry F, Kress J (1991) Heliconia Identification Guide. Smithsonian Institution Press, Washington, DC, p 344. Retrieved from: https://www.cambridge.org/core/journals/journal-of-tropical-ecology/article/f-berry-w-jkress-1991-heliconia-an-identification-guidesmithsonian-institution-press-washington-dc-usa344-pagesclothback-isbn-1560980060-price-35-00-paperback-isbn-1560980079-price-1695/3422D0B88965F25E6070FD74A1B13747

    Google Scholar 

  • Brown AH, Weir BS (1983) Measuring genetic variability in plant populations. In: Tanskley SD, Orton TJ (eds) Isozymes in plant genetics and breeding: Part A. Elsevier, Amsterdam, pp 219–229

    Chapter  Google Scholar 

  • Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26

    Article  Google Scholar 

  • Carvalho R, Soares FWS, Brasileiro-Vidal AC (2005) The relationships among lemons, limes and citron: a chromosomal comparison. Cytogenet Genome Res 109:276–282. https://doi.org/10.1159/000082410

    Article  CAS  PubMed  Google Scholar 

  • Costa AS, Loges V, Castro ACR et al (2006) Perfilhamento e expansão de touceiras de helicônias. Hort Bras 24:460–463

    Google Scholar 

  • Costa AS, Loges V, Castro ACR (2007) Variabilidade gene’tica e correlações entre caracteres de cultivares e hı’bridos de Heliconia psittacorum. Revista Brasileira de Ciências Agrárias 2:187–192

    Article  Google Scholar 

  • Costa MGS, Leite BSF, Loges V et al (2016) Chromosome markers confirm origin of Heliconia hybrids and triploids. Euphytica 25:1–14. https://doi.org/10.1007/s10681-016-1780-5

    Article  CAS  Google Scholar 

  • Criley RA (2000) Seasonal flowering patterns for Heliconia shown by grower records. Acta Hortic 541:159–165. https://doi.org/10.17660/ActaHortic.2000.541.22

    Article  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York, pp 1–1262

    Google Scholar 

  • Dahlgren RMT, Clifford TH, Yeo PF (1985) The families of monocotyledons. Springer, Berlin, pp 350–358

    Google Scholar 

  • Daniels GS, Stiles FG (1979) The Heliconia taxa of Costa Rica.Keys and descriptions. Brenesia15:1–150

    Google Scholar 

  • De Nettancourt D (1977) Incompatibility in angiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  • East EM (1940) The distribution of self-sterility in the flowering plants. Proc Am Phil Soc 82:449–518

    Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Princeton University Press, Princeton

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy, angiosperms. Almquist & Wiksell, Stockholm

    Google Scholar 

  • Faegri K, Iversen J (1950) Textbook of modern pollen analysis. Munksgaard, Copenhagen, p 169

    Google Scholar 

  • Filho RMM, Pereira FRA, Martins RSS (2016) Genetic diversity and morphological characterization of half-sib families of Heliconia bihai L., H. chartacea Lane ex Barreiros, and Heliconia wagneriana Peterson. Genet Mol Res 15(2):1–9

    CAS  Google Scholar 

  • Goh CJ, Kumar PP, Yau CK (1995) Genetic variations detected with RAPD markers in Heliconia. Acta Hortic 420:72–74

    Article  CAS  Google Scholar 

  • Gowda V, Erickson DL, Kress WJ (2012) Development and characterization of microsatellite loci for two Caribbean Heliconia (Heliconiaceae: H. bihai and H. caribaea). Am J Bot 99:81–83. https://doi.org/10.3732/ajb.1100386

    Article  Google Scholar 

  • Gray JE, McClure BA, Bonig I et al (1991) Action of the style product of the self-incompatibility gene of Nicotiana alata (S-RNase) on in vitro grown pollen tubes. Plant Cell 3:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guangsui Y, Junmei Y, Qingyun L, Yanxia Z, Zhiqun Z (2010) Karyotypes comparison of eight varieties of Heliconia spp. Chin J Trop Crops 12:2118–2123

    Google Scholar 

  • Guimarães WNR, Ferraz GMG, Martins LSS et al (2012) Genetic diversity analysis of Heliconia psittacorum cultivars and interspecific hybrids using nuclear and chloroplast DNA regions. In: Aflakpui G (ed) Agricultural science. InTech, Rijeka, pp 11–22. https://doi.org/10.5772/48815

    Chapter  Google Scholar 

  • Guimarães WNR, Martins LSS, Castro CEF (2014) Heliconia phenotypic diversity based on qualitative descriptors. Genet Mol Res 13:3128–3142. https://doi.org/10.4238/2014.April.17.9

    Article  PubMed  Google Scholar 

  • Hagman M (1975) Incompatibility in forest trees. Proc R Soc Lond B 188:313–326

    Article  Google Scholar 

  • Hanson L, McMahon KA, Johnson MA, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1975) Incompatibility and the pollen-stigma interaction. Annu Rev Plant Physiol 26:403–425

    Article  CAS  Google Scholar 

  • Hommel E, Mathiesen ER, Aukland K, Parving HH et al (1990) Pathophysiological aspects of edema formation in diabetic nephropathy. Kidney Int 38:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Ioerger TR, Gohlke JR, Xu B et al (1991) Primary structural features of the self-incompatibility protein in Solanaceae. Sex Plant Reprod 4:81–87

    Article  Google Scholar 

  • Isaza L, Marulanda ML, López AM (2012) Genetic diversity and molecular characterization of several Heliconia species in Colombia. Genet Mol Res 11:4552–4563

    Article  CAS  PubMed  Google Scholar 

  • Ishimizu T, Endo T, Yamaguchi-Kabata Y et al (1998) Identification regions in which positive selection may operate in S-RNase of Rosaceae: implication for S-allele-specific recognition sites in S-RNase. FEBS Lett 440:337–342

    Article  CAS  PubMed  Google Scholar 

  • Janakiram T, Kumar PP (2011) Enhancing flower potential of Heliconia. Indian J Hortic 56(1):22–25

    Google Scholar 

  • Johnson HW, Robinson HF, Comstock RE (1955) Estimate genetic and environmental variability in soyabean. Agron J 47:314–318

    Article  Google Scholar 

  • Johansen LB (2005) Phylogeny of Orchidantha (Lowiaceae) and the Zingiberales based on six DNA regions. Syst Bot 30:106–117

    Article  Google Scholar 

  • Kaemwong S, Eksomtramage L (1998) Chromosome numbers of genus Heliconia. Plant Genet Breed 20:489–495

    Google Scholar 

  • Kao TH, McCubbin AG (1996) How flowering plants discriminate between self and non self-pollen to prevent inbreeding. Proc Natl Acad Sci U S A 93:12059–12065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayarohanam S, Kavimani S (2015) Current trends of plants having antidiabetic activity: a review. J Bioanal Biomed 7:55–65

    Article  Google Scholar 

  • Kress WJ (1981) Reproductive biology and systematics of central American Heliconia (Heliconiaceae). Ph.D. dissertation, Duke Univ, Durham

    Google Scholar 

  • Kress WJ (1983) Self-incompatibility in central American Heliconia. Evolution 37(4):735–744

    PubMed  Google Scholar 

  • Kress WJ (1984) Systematics of central American Heliconia (Heliconiaceae) with pendent inflorescences. J Arnold Arbor 65:429–532

    Article  Google Scholar 

  • Kress WJ (1989) New taxa and notes on Heliconia (Heliconiaceae). Selbyana 11:49–53

    Google Scholar 

  • Kress WJ (1990) The diversity and distribution of Heliconia (Heliconiaceae) in Brazil. Acta Bot Bras 4:159–167

    Google Scholar 

  • Ksiażczyk T, Zwierzykowska E, Molik K (2015) Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis and Lolium perenne hybrid. Protoplasma 252:985–996. https://doi.org/10.1007/s00709014-0734-9

    Article  PubMed  Google Scholar 

  • Kumar V, Prabha R (2018) Extraction and analysis of natural dye. J Nat Prod Plant Resour 8(2):32–38

    CAS  Google Scholar 

  • Lee YH, Nig NY, Goh CJ (1994) Pollen formation and fruit set in some cultivars of Heliconia psittacorum. Sci Hortic 60:167–172

    Article  Google Scholar 

  • Levin DA (1975) Gametophytic selection in Phlox. In: Mulcahy DL (ed) Gamete competition in plants and animals. North Holland Publ. Co., Amsterdam, pp 207–218

    Google Scholar 

  • Linhart YB (1973) Ecological and behavioural determinants of pollen dispersal in humming bird pollinated Heliconia. Am Nat 107:511–523

    Article  Google Scholar 

  • Loges V, Castro CEF, Guimarães WNR (2012) Agronomic traits of Heliconia for cut flowers use and molecular markers. Acta Hortic 937:535–543

    Article  Google Scholar 

  • Maglianesi MA, Boehning-Gaese K, Schleuning M (2015) Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions. J Anim Ecol 84:655–664

    Article  PubMed  Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2015) Evaluation of Heliconia species based on agro-morphological traits. Int J Agric Environ Biotechnol 8(4):957–964. https://doi.org/10.5958/2230-732X.2015.00109.6

    Article  Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2019a) Consequences of divergent vase solutions on postharvest durability and quality of Heliconia inflorescences. Acta Hortic 1256:77–94. https://doi.org/10.17660/ActaHortic.2019.1256.12

    Article  Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2019b) Rejoinder of diverse organic growing media on morphological attributes of nine Heliconia species and varieties under West Bengal condition. J Crop Weed 15(1):35–44

    Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2019c) Study on genetic variability and correlation for floral traits and yield in Heliconia genotypes. J Crop Weed 15(1):64–72

    Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2020a) Molecular characterization of ten Heliconia (Heliconiaceae) genotypes by means of RAPD markers. Acta Hortic 1288:95–102. https://doi.org/10.17660/ActaHortic.2020.1288.14

    Article  Google Scholar 

  • Malakar M, Acharyya P, Biswas S (2020b) Discernment of pollen grain fertility and stigma receptivity plying hasty-easy techniques of Heliconia species L. under microscope. Acta Hortic 1288:139–148. https://doi.org/10.17660/ActaHortic.2020.1288.21

    Article  Google Scholar 

  • Mangave BD, Singh A, Mahatma MK (2013) Effects of different plant growth regulators and chemicals spray on post-harvest physiology and vase life of Heliconia inflorescence cv. ‘Golden Torch’. Plant Growth Regul 69:259–264

    Article  CAS  Google Scholar 

  • Marouelli LP, Inglis PW, Ferreira MA (2010) Genetic relationships among Heliconia (Heliconiaceae) species based on RAPD markers. Genet Mol Res 9(3):1377–1387

    Article  CAS  PubMed  Google Scholar 

  • McClure BA, Cruz-Garcia F, Beecher BS et al (2000) Factors affecting inter and intra-specific pollens rejection in Nicotiana. Ann Bot 85:113–123

    Article  Google Scholar 

  • Meléndez-Ackerman E, Rojas-Sandoval J, Planas S (2008) Self-compatibility of microgametophytes in Heliconia bihai (Heliconiaceae) from St. Lucia. Caribb J Sci 44(2):145–149

    Article  Google Scholar 

  • Mollik MAH, Hassan AI, Paul TK (2010) A survey of medicinal plant usage by folk medicinal practitioners in two villages by the Rupsha River in Bagerhat District, Bangladesh. Am Eur J Sustain Agric 4(3):349–356

    Google Scholar 

  • Moore PD, Webb GA, Collinson ME (1991) Pollen analysis, 2nd edn. Oxford Blackwell Scientific Publications, London

    Google Scholar 

  • Moraes AP, Soares-Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosom Res 15:115–121. https://doi.org/10.1007/s10577-006-1101-2

    Article  CAS  Google Scholar 

  • Mora-U J, Solis EM (1980) Polinizacion en Bactris gasipaes H. B. K. (Palmae). Rev Biol Trop 28:153–174

    Google Scholar 

  • Narkar ND, Sheela VL, Kadam DS (2017) Studies of pollen grains in Heliconia (Heliconia spp.) for improvement. Curr Hortic 4(1):48–51

    Google Scholar 

  • Nascimento HRD, Gallo R, Karsburg IV (2014) Cytogenetic and identification of the nucleolus organizer region in Heliconia bihai (L.). Rev Ceres 61(4):451–457

    Article  Google Scholar 

  • Nelson J (2000) The HSPR News Letter, Published by Heliconia Society of Puerto Rico. 2:1–3

    Google Scholar 

  • Nettancourt DDE (1977) Incompatibility in angiosperms. Springer, New York

    Book  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166. https://doi.org/10.1007/s0012200.51419

    Article  CAS  Google Scholar 

  • Nowicke FW, Skvarla FF (1977) Pollen morphology and the relationship of the plumbaginaceae, polygonaceae, and prirnulaceae to the order centrospermae. Smithson Contrib Bot 37:1–23. Retrieved from: http://rcpol.org.br/wp-content/uploads/2018/03/95-Nowicke-_-Skvarla-1977-Pollen- Morphology-and-the-Relationship-of-the-Plumbaginaceae-Polygonaceae-and-Prirnulaceae-to-the-Order- Centrospermae.pdf

    Google Scholar 

  • Omanakumari N, Mathew PM (1976) Developmental abnormalities in microspores of Heliconia bihai Linn. New Bot 3:33–37

    Google Scholar 

  • Palma ART, Vieira IN (2006) Thylamys genus in Brazil: natural history and geographic distribution. In: Caceres NC, Emygdio L, Monteiro-Filho A (Org) The Marsupails of Brazil: biology, ecology and evolution. Campo Grande: Publisher of the Federal University of Mato Grosso do Sul, pp 271–286

    Google Scholar 

  • Panse VG (1957) Genetics of quantitative characters in relation to plant breeding. Indian J Genet 17(3):10–328

    Google Scholar 

  • Pinheiro CR, Amorim JAE, Diniz LEC et al (2011) Diversidade genética de isolados de Ralstonia solanacearum e caracterização molecular quanto à filotipos e sequevares. Pesq Agropec Bras 46:593–602

    Article  Google Scholar 

  • Rocha FHA, Loges V, Costa ASD (2010) Genetic study with Heliconia psittacorum and interspecific hybrids. Crop Breed Appl Biotechnol 10:282–288. https://doi.org/10.1590/S1984-70332010000400001

    Article  Google Scholar 

  • Salih J (1994) Pollen studies on Heliconia. A dissertation submitted in partial fulfilment for the degree of Bachelor of Science with honours in botany. National University of Singapore, pp 85–86. Retrieved from: http://lkcnhm.nus.edu.sg/dna/docs/ed566648139cd5114a1ac01a07611274.pdf

    Google Scholar 

  • Sanjeev SJ, Sheela S, Geetha Lekshmi PR (2010) Floral biology and correlation studies in Heliconia. J Ornam Hortic 13:8–19

    Google Scholar 

  • Schmitt J (1980) Pollinator foraging behaviour and gene dispersal in Senecio (Compositae). Evolution 34:934–943

    Article  PubMed  Google Scholar 

  • Shahriar S, Farzana B, Rahmatullah M (2017) Heliconia rostrata Ruiz & Pav. (Heliconiaceae) – a previously unreported plant for treatment of diabetes and diabetes-induced edema. Asian J Pharmacogn 1(4):51–54

    Google Scholar 

  • Sheela VL, Lekshmi PRG, Nair CSJ (2006) Molecular characterization of Heliconia by RAPD assay. J Trop Agric 44(1/2):37–41

    CAS  Google Scholar 

  • Sheela VL, George TS, Rakhi R (2007) Variability studies in cut flower varieties of Heliconias. Indian J Hortic 64(1):109–111

    Google Scholar 

  • Silva MW, Ono EO, Santos MHLC et al (2016) Growth and production of Heliconia under different light conditions. Ciências Agrárias, Londrina 38(1):7–18

    Article  CAS  Google Scholar 

  • Silva MW, Ono EO, Santos MHLC et al (2017) Growth and production of Heliconia under different light conditions. Agronomia 38(1):7–18

    Google Scholar 

  • Simao DG, Lucia SV (2001) Morphology and anatomy in Heliconia angusta Vell. and H. velloziana L. Emygd. (Zingiberales: Heliconiaceae) from the Atlantic forest of south-eastern Brazil. REvta Brasil Bot 24(4):415–424

    Google Scholar 

  • Sobrevila C, Arroyo MTK (1982) Breeding systems in a montane tropical cloud forest in Venezuela. Plant Syst Evol 140:19–37

    Article  Google Scholar 

  • Srinivas M, Kumar R, Janakiram T (2012) Evaluation of Heliconia genotypes for vegetative and flowering traits. Indian J Genet 72(3):397–399

    Google Scholar 

  • Stuessy TF (1990) Plant taxonomy: the systematic evaluation of comparative data. Columbia University Press, New York

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: Reuther W, Weber HJ, Batchelor LD (eds) The Citrus industry: history, world distribution, botany and varieties. University of California Press, Berkeley, pp 190–430

    Google Scholar 

  • Temeles EJ, Pan IL, Brennan JL (2000) Evidence for ecological causation of sexual dimorphism in a hummingbird. Science 289:441–443

    Article  CAS  PubMed  Google Scholar 

  • Urooj-UI-Nissa B, Khan FU, Neelofar N et al (2015) Physiological and flowering response of Dahlia (Dahlia variabilis Desf.) cv. ‘Pink Attraction’ to growing media. J Plant Pest Sci 2(1):33–42

    Google Scholar 

  • Wang Q, Wang J, Zhang Y, Zhang Y, Xu S, Lu Y (2015) The application of fluorescence in situ hybridization in different ploidy levels cross-breeding of lily. PLoS One 10:1268–1299. https://doi.org/10.1371/journal.pone.0126899

    Article  CAS  Google Scholar 

  • Watson DP, Smith RR (1914) Ornamental Heliconias. Published by Hawaii Cooperative Ex tension Service, Circular 482. Retrieved from: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/C1-482.pdf

  • Whitehouse HK (1950) Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. Ann Bot 14:199–216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malakar, M., Biswas, S. (2022). Heliconias: Dramatic Flowers of the Tropics and Subtropics. In: Datta, S.K., Gupta, Y.C. (eds) Floriculture and Ornamental Plants. Handbooks of Crop Diversity: Conservation and Use of Plant Genetic Resources. Springer, Singapore. https://doi.org/10.1007/978-981-15-3518-5_26

Download citation

Publish with us

Policies and ethics