Skip to main content
Log in

Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The economically important genus Arachis (Fabaceae) comprises 80 species restricted to South America. One monograph on the genus divided it into nine sections and included an intuitive assessment of evolutionary relationships. There is no comprehensive phylogenetic study of the genus. To test the current systematic treatment of the genus, we reconstructed a phylogeny for Arachis using nuclear ITS and plastid trnT–trnF sequences from 46 species representing all nine sections. ITS cloning of the allotetraploid species of section Arachis indicated the presence of A and B genome alleles and chimeric sequences. Our study revealed that species from section Extranervosae were the first emerging lineage in the genus, followed by sections Triseminatae and Caulorrhizae, and two terminal major lineages, which we refer to as erectoides and arachis. The lineage erectoides comprises members of sections Erectoides, Heteranthae, Procumbentes, Rhizomatosae, and Trierectoides. Species in the arachis lineage form two major clades, arachis I (B and D genomes species and the aneuploids) and arachis II (A genome species). Our results substantiated the sectional treatment of Caulorrhizae, Extranervosae, and Triseminatae, but demonstrated that sections Erectoides, Procumbentes, and Trierectoides are not monophyletic. A detailed study of the genus Arachis with denser taxon sampling, additional genomic regions, plus information from morphology and cytogenetics is needed for comprehensive assessment of its systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Álverez I, Wendel JF (2003) Ribosomal ITS sequence and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  Google Scholar 

  • Angelici C, Hoshino AA, Nobile PM, Palmieri DA, Valls JFM, Gimenes MA, Lopes CR (2008) Genetic diversity in section Rhizomatosae of the genus Arachis (Fabaceae) based on microsatellite markers. Genet Mol Biol 31:79–88

    Article  CAS  Google Scholar 

  • Baker FK, Lutzoni FM (2002) The utility of the incongruence length difference test. Syst Biol 51:625–637

    Article  Google Scholar 

  • Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA (2007) Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing. Genet Res 89:93–106

    Article  CAS  PubMed  Google Scholar 

  • Bertozo MR, Valls JFM (2001) Seed storage protein electrophoresis in Arachis pintoi and A. repens (Leguminosae) for evaluating genetic diversity. Genet Resour Crop Evol 48:121–130

    Article  Google Scholar 

  • Birnboim HC, Dolye J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Borsch T, Quandt D (2009) Mutational dynamics and phylogenetic utility of non-coding plastid DNA. Plant Syst Evol Special Issue on non-coding DNA. Evolution 282:169–199

    CAS  Google Scholar 

  • Bravo JP, Hoshino AA, Angelici C, Lopes CR, Gimenes MA (2006) Transferability and use of microsatellite markers for the genetic analysis of the germplasm of some Arachis section species of the genus Arachis. Genet Mol Biol 29:516–524

    Article  CAS  Google Scholar 

  • Burow M, Simpson C, Faries M, Starr J, Paterson A (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Snell Q, Walke P, Posada D, Crandall KA (2002) TCS: estimating gene genealogies. In: Parallel distributed processing symposium (Proceedings international IPDPS. Abstracts and CD-Rom), pp 184–190

  • Creste S, Tsai S, Valls J, Gimenes M, Lopes C (2005) Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers. Genet Resour Crop Evol 52:1079–1086

    Article  CAS  Google Scholar 

  • Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? MBE 19:432–437

    CAS  Google Scholar 

  • Dolphin K, Belshaw R, Orme CDL, Quicke DLJ (2000) Noise and incongruence: interpreting results of incongruence length difference test. Mol Phylogenet Evol 17:401–406

    Article  CAS  PubMed  Google Scholar 

  • Farris JS, Kallersjo M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fernández A, Krapovickas A (1994) Cromosomas y evolucion en Arachis (Leguminosae). Bonplandia 8:187–220

    Google Scholar 

  • Galgaro L, Valls JFM, Lopes CR (1997) Study of the genetic variability and similarity among and within Arachis villosulicarpa, A. pietrarellii and A. hypogaea through isoenzyme analysis. Genet Resour Crop Evol 44:9–15

    Article  Google Scholar 

  • Galgaro L, Lopes CR, Gimenes M, Valls JFM, Kochert G (1998) Genetic variation between several species of section Extranervosae, Caulorrhizae, Heteranthae, and Triseminatae (genus Arachis) estimated by DNA polymorphism. Genome 41:445–454

    Article  CAS  Google Scholar 

  • Gimenes MA, Lopes CR, Galgaro L, Valls JFM, Kochert G (2002a) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429

    Article  CAS  Google Scholar 

  • Gimenes MA, Lopes CR, Valls JFM (2002b) Genetic relationships among Arachis species based on AFLP. Genet Mol Biol 25:349–353

    Article  CAS  Google Scholar 

  • Gimenes MA, Hoshino AA, Barbosa AV, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Pl Biol 7:9

    Article  Google Scholar 

  • Gregory WC, Gregory MP (1979) Exotic germ plasm of Arachis L. interspecific hybrids. J Hered 70:185–193

    Google Scholar 

  • Gregory WC, Gregory MP, Krapovicaks A, Smith BW, Yarbrough JA (1973) Structure and genetic resources of peanuts. In: Peanuts—culture and uses. American Peanut Research and Education Association, Inc., Stillwater, pp 47–133

    Google Scholar 

  • Gregory WC, Krapovicaks A, Gregory MP (1980) Structure, variation, evolution and classification in Arachis. In: Summerfield RJ, Bunting AH (eds) Advances in legume sciences. Royal Botanical Gardens, Kew, pp 469–481

    Google Scholar 

  • Halward TM, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Hammer K, Arrowsmith N, Gladis T (2003) Agrobiodiversity with emphasis on plant genomics research. Naturwissenschaften 90:241–250

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Pl Syst Evol 198:167–178

    Article  CAS  Google Scholar 

  • Hoshino AA, Bravo JP, Angelici CM, Barbosa AVG, Lopes CR, Gimenes MA (2006) Heterologous microsatellite primer pairs informative for the whole genus Arachis. Genet Mol Biol 29:665–675

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, Boston, pp 297–348

    Google Scholar 

  • Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340

    Article  CAS  PubMed  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  Google Scholar 

  • Kovarik A, Matyasek R, Lim K, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch A (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–625

    Article  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox (Section Arachis), two species with basic chromosome number x = 9. Cytologia 63:177–181

    Google Scholar 

  • Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533

    Article  PubMed  Google Scholar 

  • Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MDC, Hopkins MS, Mitchell SE, Kretovich S, Valls JFM, Ferreira EM (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Pl Biol 4:11

    Google Scholar 

  • Müller K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinf 4:65–69

    Article  Google Scholar 

  • Müller K (2007) PRAP2—likelihood and parsimony rachet analysis, v.09

  • Müller J, Müller K (2004) TreeGraph: automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes 4:786–788

    Article  Google Scholar 

  • Müller K, Quandt D, Müller J, Neinhuis C (2005) PhyDE, version 0.92: phylogenetic data editor

  • Nixon K (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Nóbile PM, Gimenes MA, Valls JFM, Lopes CR (2004) Genetic variation within and among species of genus Arachis, section Rhizomatosae. Genet Resour Crop Evol 51:299–307

    Article  Google Scholar 

  • Palmieri DA, Bechara MD, Curi RA, Gimenes MA, Lopes CR (2005) Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Favaceae). Mol Ecol Notes 5:77–79

    Article  CAS  Google Scholar 

  • Peñaloza APS, Valls JFM (1997) Contagen do número cromossômico en assos de Arachis decora (Legumonsae). In: Vega RFA, Bovi MLA, Betti JA, Voltan RBQ (eds) Simpósio Latino Slericanno de Recursos Genéticos Vegetais. IAC/Embrapa-Cenargen, Campanias, p 21

    Google Scholar 

  • Peñaloza APS, Valls JFM (2005) Chromosome number and satellited chromosome morphology of eleven species of Arachis (Leguminosae). Bonpladia 15:65–72

    Google Scholar 

  • Quandt D, Müller K, Huttenen S (2003) Characterisation of the chloroplast DNA psbT-H region and the influence of dvad symmestrical elements on phylogentic reconstructions. Pl Biol 5:400–410

    Article  CAS  Google Scholar 

  • Quandt D, Müller K, Stech M, Frahm J-P, Frey W, Hilu KW, Borsch T (2004) Molecular evolution of the chloroplast trnL–F region in land plants. Monogr Syst Bot Mo Bot Gard 98:13–37

    Google Scholar 

  • Raina S, Mukai Y (1999) Detection of a variable number of 18S-5.8 S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    Article  CAS  Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analysis. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 96–137

    Google Scholar 

  • Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea L. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675

    Article  Google Scholar 

  • Soltis DE, Mavrodiev EV, Doyle JJ, Rauscher J, Soltis PS (2008) ITS and ETS sequence data and phylogeny reconstruction in allopolyploids and hybrids. Syst Bot 33:7–20

    Article  Google Scholar 

  • Stalker HT (1981) Hybrids in the genus Arachis between sections Erectoides and Arachis. Crop Sci 21:359–362

    Article  Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1–40

    Article  Google Scholar 

  • Stöver B, Müller K (2010) TreeGraph2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf 11:7

    Article  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0, β. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gilley L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of the chloroplast DNA. Pl Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Tun YT, Yamaguchi H (2007) Phylogenetic relationship of wild and cultivated Vigna (Subgenus Ceratotropis, Fabaceae) from Myanmar based on sequence variations in non-coding regions of trnT–F. Breed Sci 57:271–280

    Article  CAS  Google Scholar 

  • Valls JFM, Simpson CE (1994) Taxonomy, natural distribution and attributes of Arachis. In: Kerridge PC, Hardy B (eds) Biology and agronomy of forage Arachis. CIAT, California, pp 1–18

    Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63

    Google Scholar 

  • Vander Stappen J, Van Campenhout S, Gama Lopez S, Volckaert G (1998) Sequencing of the internal transcribed spacer region ITS1 as a molecular tool detecting variation in the Stylosanthes guianensis species complex. Theor Appl Genet 96:869–877

    Article  CAS  Google Scholar 

  • Vander Stappen J, De Laet J, Gama-López S, Van Campenhout S, Volckaert G (2002) Phylogenetic analysis of Stylosanthes (Fabaceae) based on the internal transcribed spacer region (ITS) of nuclear ribosomal DNA. Pl Syst Evol 234:27–51

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the USDA Southern Regional PI station for some of the plant material used for this study, Deborah Wiley for growing and maintaining plant samples, and Chelsea M. Black and Daniel S. Volpe for assisting in laboratory work. This work was partially funded by the Virginia Academy of Science, the American Society of Plant Taxonomists, and the Virginia Tech Graduate Research Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Friend.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, S.A., Quandt, D., Tallury, S.P. et al. Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Syst Evol 290, 185–199 (2010). https://doi.org/10.1007/s00606-010-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0360-8

Keywords

Navigation