Skip to main content
Log in

Concise review of the genus Asparagopsis Montagne, 1840

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Asparagopsis (Bonnemaisoniaceae, Rhodophyta) species are distributed in most temperate and tropical waters of the world, where they are considered an iconic invader. Despite a low number of species in the genus, Asparagopsis armata and A. taxiformis are considered species complexes, revealing remarkable genetic diversity in native and introduced distribution ranges. Macroscopic life stages that characterize the life cycle, gametophytes, and tetrasporophytes, present different morphologic, photosynthetic, physiological, and ecological features, which may aid in the course of an invasive process. Asparagopsis presence lowers diversity and abundance of native macroalgal communities. Despite hosting a relatively high number of epiphytes and epifauna, lower numbers are consistently found in these invasive species when compared to native flora. The chemical composition of A. armata and A. taxiformis and thus, its commercial applications have been studied since the 1970s. Recently, the discovery of its properties as a potent methane release inhibitor from ruminant animals has boosted a renewed scientific, media, and commercial interest in the genus. Sourcing biomass remains a challenge, and while techniques of cultivation are available, more needs to be done to reach the scale needed to fit such large-volume application. Much is yet to be expected from this red algal genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbott IA (1984) Limu: an ethnobotanical study of some Hawaiian seaweeds. Pacific Tropical Botanical Garden, Kauai, Hawaii.

  • Agardh JG (1841) In historiam algarum symbolae. Linnaea 15:1–50

  • Aires T, Serrão EA, Engelen AH (2016) Host and environmental specificity in bacterial communities associated to two highly invasive marine species (genus Asparagopsis). Front Microbiol 7:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleem AA (1951) Algues marines de profondeur des environs d’Alexandrie (Egypte). Bull Soc Bot Fr 98:249–252

    Article  Google Scholar 

  • Altamirano M (1999) Nuevas citas para la flora marina del Archipielago de las Islas Chafarinas. Acta Bot Malacit 24:185–187

    Article  Google Scholar 

  • Altamirano M, Muñoz AR, De la Rosa J, Barrajón-Mínguez A, Barrajón-Domenech A, Moreno-Robledo C, Arroyo MC (2008) The invasive species Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) on Andalusian coasts (Southern Spain): reproductive stages, new records and invaded communities. Act Bot Malacit 33:5–15

    Article  Google Scholar 

  • Andreakis N, Procaccini G, Kooistra WHCF (2004) Aspragopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations. Eur J Phycol 39:273–283

    Article  CAS  Google Scholar 

  • Andreakis N, Procaccini G, Maggs C, Kooistra WHCF (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299

    Article  CAS  PubMed  Google Scholar 

  • Andreakis N, Costello P, Zanolla M, Saunders GW, Mata L (2016) Endemic or introduced? Phylogeography of Asparagopsis (Florideophyceae) in Australia reveals multiple introductions and a new mitochondrial lineage. J Phycol 52:141–147

    Article  CAS  PubMed  Google Scholar 

  • Aranda J, Niell FX, Fernández JA (1984) Production of Asparagopsis armata (Harvey) in a thermally-stressed intertidal system of low tidal amplitude. J Exp Mar Biol Ecol 84:285–295

    Article  Google Scholar 

  • Ardissone F (1883) Phycologia mediterranea. Parte prima, Floridee., vol 1. Antica tipografica ferri di Maj e Malnati, Varese, Italy, p 516

    Book  Google Scholar 

  • Ballesteros Sagarra E, Rodríguez Prieto C (1996) Preséncia d’Asparagopsis taxiformis (Delile) Trevisan a Balears. Boll Soc Hist Nat Balears 39:135–138

    Google Scholar 

  • Bolton JJ, Andreakis N, Anderson RJ (2011) Molecular evidence for three separate cryptic introductions of the red seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) in South Africa. Afr J Mar Sci 33:263–271

    Article  Google Scholar 

  • Bonin DR, Hawkes MW (1987) Systematics and life histories of New Zealand Bonnemaisoniaceae (Bonnemaisoniales, Rhodophyta): I. The genus Asparagopsis. N Z J Bot 25:577–590

    Article  Google Scholar 

  • Boudouresque CF, Verlaque M (2002) Assessing scale and impact of ship-transported alien macrophytes in the Mediterranean Sea. CIESM Workshop Monogr 2:53–61

    Google Scholar 

  • Burreson BJ, Moore RE, Roller PP (1976) Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta). J Agric Food Chem 24:856–861

    Article  CAS  Google Scholar 

  • Castellanos C, Hernández-Vega S, Junoy J (2003) Isópodos marinos (Crustacea: Isopoda) de las Islas Chafarinas (Mediterráneo occidental). Bol Inst Esp Oceanogr 19:219–233

    Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweeds and their uses. Chapman and Hall, London

    Book  Google Scholar 

  • Clark BR, Mizobe M, Kaluhiwa JLM, Leong JA, Borris RP (2018) Chemical and genetic differences between Hawaiian lineages of the alga Asparagopsis taxiformis. J Appl Phycol 30:2549–2559

    Article  CAS  Google Scholar 

  • Chihara M (1960) On the germination of tetraspores of Falkenbergia hillebrandii (Bomet) Falkenberg. J Jap Bot 35:249–253

    Google Scholar 

  • Coelho S, Vieira HC, Oliveira JMM, Pires SFS, Rocha RJM, Rodrigues ACM, Soares AMVM, Bordalo MD (2021) How does Mytilus galloprovincialis respond when exposed to the gametophyte phase of the invasive red macroalga Asparagopsis armata exudate. Water 13:460

    Article  CAS  Google Scholar 

  • Codomier L, Segot M, Teste J, Jeanty G (1978) Sur la croissance et le développement des frondes d’Asparagopsis armata Harvey (Rhodophycée, Bonnemaisoniales) à partir de rameaux à harpons mis en culture dans un milieu enrichi en brome. Bull Soc Phycol France 23:29237

    Google Scholar 

  • Combaut G, Bruneau Y, Codomier L, Teste J (1979) Comparative sterols composition of the red alga Asparagopsis armata and its tetrasporophyte Falkenbergia rufolanosa. J Nat Prod 42:150–151

    Article  CAS  PubMed  Google Scholar 

  • CMA-Consejería de Medio Ambiente y Ordenación del Territorio (2017) Life+Posidonia Andalucía. LIFE NAT 09/ES/000534. Final Report. Ed. Consejería de Medio Ambiente y Ordenación del Territorio. Sevilla, 119pp

  • Cormaci M, Furnari G, Alongi G (2020) Flora marina bentonica del Mediterraneo: Rhodophyta-Rhodymeniophycidae I. Acrosymphytales, Bonnemaisoniales, Gelidiales, Gigartinales, Gracilariales. Bull Gioenia Acad Nat Sci Catania 53:FP11–FP346

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • De la Rosa J, Arroyo MC, Acuña D, Barrajón A, de la Fuente J, de la Linde A, Fernández-Casado M, Gómez G, Moreno D, Remón J, Vivas-Navarro S, Fernández E, Ortega F, Dana E (2009) Macroalgas marinas invasoras en el litoral de Andalucía. Communication in the 3rd National Congress on Alien Exotic Species. Zaragoza, Spain.

  • de Valera M (1942) A red algae new to Ireland: Asparagopsis armata Harv. on the west coast. Irish Nat Jour 8:30–33

  • Delile AR (1813) Description de l’Égypte, ou Recueil des observations et des recherches qui ont été faites en Égypte pendant l’expédition de l’armée française, publié par les orderes de Sa Majesté l’Empereur Napoléon le Grand. Histoire naturelle. Imprimerie Impériale, Paris

  • Dijoux L, Viard F, Payri C (2014) The more we search, the more we find: discovery of a new lineage and a new species complex in the genus Asparagopsis. PloS One 9(7):e103826

  • Dixon PS (1964) Asparagopsis in Europe. Nature 201:902

    Article  Google Scholar 

  • Dixon PS (1965) Perennation, vegetative propagation and algal life histories, with special reference to Asparagopsis and other Rhodophyta. Bot Gotheburg 3:67–74

    Google Scholar 

  • Dixon PS, Irvine LM (1977) Seaweeds of the British Isles. British Museum, London

    Google Scholar 

  • Feldmann J, Feldmann G (1939) Additions a la flore des algues marines d’Algérie. Fascicule 2. Bull Soc Hist Nat Afr Nord 30:453–464

    Google Scholar 

  • Feldmann J (1942) Les algues marines de la côte des Albères. Travaux Algologiques 1:29–118

    Google Scholar 

  • Feldmann G (1965) Le developpement des tetraspores de Falkenbergia rufolanosa et le cycle des Bonnemaisoniales. Rev Gén Bot 62:621–626

    Google Scholar 

  • Feldmann J, Feldmann G (1942) Recherches sur le Bonnemaisoniaces leur alternate de generations. Ann Sci Nat Bot Biol Veg Ser 2:75–175

    Google Scholar 

  • Fenical W (1974) Polyhaloketones from the red seaweed Asparagopsis taxiformis. Tet Lett 15:4463–4466

    Article  Google Scholar 

  • Figueroa FL, Santos R, Conde- Álvarez R, Leonardo Mata L, Gómez-Pinchetti JL, Matos J, Huovinen P, Schuenhoff A, Silva J (2006) The use of chlorophyll fluorescence for monitoring photosynthetic condition of two tank-cultivated red macroalgae using fishpond effluents. Bot Mar 49:275–282

  • Flagella MM, Lorenti M, Buia MC (2005) Assessment of the potential success of Asparagopsis taxiformis. In: Proceedings of the Seventh International Conference on the Mediterranean Coastal Environment, Kuşadasi, Turkey, pp 25–29

  • Flores-Moya A, Fernández JA, Niell FX (1997) Growth pattern, reproduction and self-thinning in seaweeds: a re-evaluation in reply to Scrosati. J Phycol 33:1080–1081

    Article  Google Scholar 

  • Gache C, Bertucci F, Guerra AS, Calandra M, Berr T, Lafaye J, Jorissen H, Nugues M, Cossy J, Lecchini D (2019) Effects of Asparagopsis taxiformis metabolites on the feeding behaviour of post‐larval Acanthurus triostegus. J Fish Biol 95:1355–1358

  • Gamliel I, Buba Y, Guy-Haim T, Garval T, Willett D, Rilov G, Belmaker J (2020) Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43:1–17

    Article  Google Scholar 

  • Garzoli L, Gnavi G, Varese GC, Picco AM (2015) Mycobiota associated with the rhodophyte alien species Asparagopsis taxiformis (Delile) Trevisan de Saint Léon in the Mediterranean Sea. Mar Ecol 36:959–968

    Article  Google Scholar 

  • Gayral P (1966) Les algues de côtes Françaises (Manche & Atlantique). Éditions Doin pp 21–29

  • Giordano M, Maberly SC (1989) Distribution of carbonic anhydrase in British marine macroalgae. Oecologia 81:534–539

    Article  CAS  PubMed  Google Scholar 

  • Greff S, Aires T, Serrão EA, Engelen AH, Thomas OP, Pérez T (2017) The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints. Sci Rep 7:42625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greff S, Zubia M, Payri C, Thomas OP, Perez T (2017) Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness. Metabolomics 13:33

    Article  Google Scholar 

  • Guerra-García JM, Cabezas P, Baeza-Rojano E, García-Gómez JC (2010) Spatial patterns and seasonal fluctuations of intertidal macroalgal assemblages from Tarifa Island, southern Spain: relationships with associated Crustacea. J Mar Biol Assoc UK 91:107–116

    Article  Google Scholar 

  • Guerra-García JM, Ros M, Izquierdo D, Soler-Hurtado MM (2012) The invasive Asparagopsis armata versus the native Corallina elongata: differences in associated peracarid assemblages. J Exp Mar Biol Ecol 416:121–128

    Article  Google Scholar 

  • Guerra-García JM, Sánchez-Moyano JE (2013) Spatio-temporal distribution of the Caprellidae (Crustacea: Amphipoda) associated with the invasive seaweed Aspagopsis armata Harvey in the Southern Iberian Peninsula. Zool Baetica 24:3–17

    Google Scholar 

  • Guiry MD, Dawes CJ (1992) Daylength, temperature and nutrient control of tetrasporogenesis in Asparagopsis armata (Rhodophyta). J Exp Mar Biol Ecol 158:197–217

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 20 September 2021.

  • Hanisak D (1987) Cultivation of Gracilaria and other macroalgae in Florida for energy production. In: Bird K, Benson P (eds) Seaweed Cultivation for Renewable Resources. Elsevier, Amsterdam, pp 191–212

    Google Scholar 

  • Harvey WH (1855) Some account of the marine botany of the colony of Western Australia. Trans Roy Irish Acad 22:525–566

    Google Scholar 

  • Harvey WH (1858) Phycologia Australica: or, a history of Australian sea weeds and a synopsis of all known Australian algae, vol 1. L. Reeve, London

    Google Scholar 

  • Harvey CC, Drew KM (1949) Occurrence of Falkenbergia on the English coast. Nature 164:542–543

  • Haslin C, Pellegrini M (2001) Culture medium composition for optimal thallus regeneration in the red alga Asparagopsis armata Harvey (Rhodophyta, Bonnemaisoniaceae). Bot Mar 44:23–30

  • Horta A, Alves C, Pinteus S, Lopes C, Fino N, Silva J, Ribeiro J, Rodrigues D, Francisco J, Rodrigues A, Pedrosa R (2019) Identification of Asparagopsis armata-associated bacteria and characterization of their bioactive potential. Open Microbiol 8:e00824

  • Huisman JM (2018) Algae of Australia. Marine benthic algae of north-western Australia. 2. Red algae. ABRS & CSIRO Publishing, Canberra

  • Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiménez C, Figueroa FL, Salles S, Aguilera J, Mercado J, Viñegla B, Flores-Moya A, Lebert M, Häder DP (1998) Effects of solar radiation on photosynthesis and photoinhibition in red macrophytes from an intertidal system of southern spain. Bot Mar 41 329–338

  • Keith I, Dawson TP, Collins KJ, Campbell ML (2016) Marine invasive species: establishing pathways, their presence and potential threats in the Galapagos Marine Reserve. Pacific Cons Biol 22:377–385

    Article  Google Scholar 

  • Kelly R, Lundy MG, Mineur F, Harrod C, Maggs CA, Humphries NE, Reid N (2014) Historical data reveal power-law dispersal patterns of invasive aquatic species. Ecography 37:581–590

    Article  Google Scholar 

  • Kinley RD, de Nys R, Vucko MJ, Machado L, Tomkins NW (2016) The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci 56:282–289

    Article  CAS  Google Scholar 

  • Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW (2020) Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 259:120836

    Article  Google Scholar 

  • Kumar M, Jha A, Vijayaraghavan MR (2000) Developmental and reproductive strategies of two marine algae Gracilaria corticata (Gigartinales, Rhodophyta) and Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) from Port Okha (Gujarat), west coast of India. Indian J Mar Sci 29:248–252

    Google Scholar 

  • Kurihara A, Horiguchi H, Hanyuda T, Kawai H (2016) Phylogeography of Asparagopsis taxiformis revisited: combined mtDNA provide novel insights into population structure in Japan. Phycol Res 64:95–101

    Article  Google Scholar 

  • Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, de Nys R, Tomkins N (2016) Asparagopsis taxiformis decreases enteric methane production from sheep. Anim Prod Sci 58:681–688

    Article  Google Scholar 

  • López E, Viéitez JM (1999) Polychaete assemblages on non-encrusting infralittoral algae from the Chafarinas Islands (SW Mediterranean). Cah Biol Mar 40:375–384

    Google Scholar 

  • Lüning K (1981) Photomorphogenesis of reproduction in marine macroalgae. Ber Dtsch Bot Ges 94:401–417

    Google Scholar 

  • Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N (2016) Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J Appl Phycol 28:3117–3126

    Article  CAS  Google Scholar 

  • Madlener JC (1977) The Sea Vegetable Book. Potter/Crown Publishers, New York, USA

    Google Scholar 

  • Mancuso FP, D’Agostaro R, Milazzo M, Badalamenti F, Musco L, Mikac B, Lo Brutto S, Chemello R (2021a) The invasive seaweed Asparagopsis taxiformis erodes the primary productivity and biodiversity of native algal forest in the Mediterranean Sea. Mar Environ Res 173:105515

  • Mancuso FP, D’Agostaro R, Milazzo M, Chemello R (2021b) The invasive Asparagopsis taxiformis host a low diverse and less trophic structures molluscan assemblage compared with the native Ericaria brachycarpa. Mar Env Res 166:105279

  • Marić M, De Troch M, Occhipinti-Ambrogi A, Olenin S (2016) Tropic interactions between indigenous and non-indigenous species in Lampedusa Island, Mediterranean Sea. Mar Env Res 120:182–190

    Article  CAS  Google Scholar 

  • Marshall RA, Harper DB, McRoberts WC, Dring MJ (1999) Volatile bromocarbons produced by Falkenbergia stages of Asparagopsis spp. (Rhodophyta). Limnol Oceanogr 44:1348–1352

    Article  CAS  Google Scholar 

  • Marshall RA, Hamilton JT, Dring MJ, Harper DB (2003) Do vesicle cells of the red alga Asparagopsis (Falkenbergia stage) play a role in bromocarbon production? Chemosphere 52:471–475

    Article  CAS  PubMed  Google Scholar 

  • Martins GM, Patarra RF, Álvaro NV, Prestes ACL, Neto AI (2013) Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Mar Ecol 34:289–297

    Article  Google Scholar 

  • Martins GM, Cacabelos E, Faria J, Álvaro N, Prestes ACL, Neto AI (2019) Patterns of distribution of the invasive alga Asparagopsis armata Harvey: a multiscaled approach. Aq Inv 14:582–593

    Article  Google Scholar 

  • Mata L, Silva J, Schuenhoff A, Santos R (2006) The effects of light and temperature on the photosynthesis of the Asparagopsis armata tetrasporophyte (Falkenbergia rufolanosa), cultivated in tanks. Aquaculture 252:12–19

    Article  CAS  Google Scholar 

  • Mata L, Silva J, Schuenhoff A, Santos R (2007) Is the tetrasporophyte of Asparagopsis armata (Bonnemaisoniales) limited by inorganic carbon in integrated aquaculture? J Phycol 43:1252–1258

    Article  CAS  Google Scholar 

  • Mata L (2008) Integrated aquaculture of Bonnemaisoniaceae: physiological and nutritional controls of biomass production and of halogenated metabolite content. PhD Thesis, University of Algarve, Portugal 176pp

  • Mata L, Schuenhoff A, Santos R (2010) A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. J Appl Phycol 22:639–644

    Article  CAS  Google Scholar 

  • Mata L, Gaspar H, Santos R (2012) Carbon/nutrient balance in relation to biomass production and halogenated compound content in the red alga Asparagopsis taxiformis (Bonnemaisoniaceae). J Phycol 48:248–253

    Article  CAS  PubMed  Google Scholar 

  • Mata L, Lawton JR, Magnusson M, Andreakis N, Nys R, Andreakis N, Paul NA (2017) Within-species and temperature-related variation in the growth and natural products of the red alga Asparagopsis taxiformis. J Appl Phycol 29:1437–1447

    Article  CAS  Google Scholar 

  • McConnell O, Fenical W (1977) Halogen chemistry of the red alga Asparagopsis. Phytochemistry 16:367–374

    Article  CAS  Google Scholar 

  • Mercado JM, Gordillo FJL, Figueroa FL, Niell FX (1998) External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol 221:209–220

    Article  CAS  Google Scholar 

  • Meyer KD, Paul VJ, Sanger HR, Nelson SG (1994) Effects of seaweed extracts and secondary metabolites on feeding by the herbivorous surgeonfish Naso lituratus. Coral Reefs 13:105–112

    Article  Google Scholar 

  • Mickelson A (2013) Defining culture requirements for reproduction and growth of Asparagopsis taxiformis, a Hawaiian native red alga. MSc Thesis, University of Hawai’i at Hilo, 24pp

  • Moigne J (1998) Use of algae extracts as antibacterial and/or antifungal agent and composition containing same. PCT Patent Appl WO 1998010656:A1

    Google Scholar 

  • Montagne C (1840) Plantae cellulares. In: Barker-Webb P, Berthelot S (eds) Histoire naturelle des Iles Canaries. Vol. 3, part 2, sect. 4. Béthune, Paris, 208 pp

  • Muizelaar W, Groot M, van Duinkerken G, Peters R, Dijkstra J (2021) Safety and transfer study: transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods 10:584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers F (2021) Beef 2021: feed efficiency bonus in methane inhibiting seaweed additive - Beef Central. [online] Beef Central. Available at: https://www.beefcentral.com/news/beef-2021/beef-2021-feed-efficiency-bonus-in-methane-inhibiting-seaweed-additive/ Accessed 15 July 2021

  • Navarro-Barranco C, Florido M, Ros M, González-Romero P, Guerra-García JM (2018) Impoverished mobile epifaunal assemblages associated with the invasive macroalga Asparagopsis taxiformis in the Mediterranean. Mar Env Res 141:44–52

    Article  CAS  Google Scholar 

  • Navarro-Barranco C, Moreira J, Espinosa F, Ros M, Rallis I, Sempere-Valverde J, Ostalé-Valriberas E, Altamirano M, García-Gómez JC, Guerra-García JM (2021) Evaluating the vulnerability of coralligenous epifauna to macroalgal invasions. Aquat Conservat: Mar Freshw Ecosyst 31:2305–2319

  • Neto AI (2000) Observations on the biology and ecology of selected macroalgae from the littoral of São Miguel (Azores). Bot Mar 43:483–498

  • Neto AI (2001) Macroalgal species diversity and biomass of subtidal communities of São Miguel (Azores). Helgol Mar Res 55:101–111

    Article  Google Scholar 

  • Ní Chualáin FN, Maggs CA, Saunders GW, Guiry MD (2004) The invasive genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): molecular systematics, morphology, and ecophysiology of Falkenbergia isolates. J Phycol 40:1112–1126

    Article  Google Scholar 

  • Nizamuddin M, West JA, Menez EG (1979) A list of marine algae from Libya. Bot Mar 22:465–476

  • Ólafsson E (2017) Marine macrophytes as foundation species. CRC Press, Boca Raton, p 277

    Google Scholar 

  • Orfanidis S (1991) Temperature responses and distribution of macroalgae belonging to the warm-temperate Mediterranean-Atlantic distribution group. Bot Mar 34: 5414–552

  • Orlando-Bonaca M, Lipej L, Bonanno G (2021) Non-indigenous macrophytes in Central Mediterranean ports, marinas and transitional waters: origin, vectors and pathways of dispersal. Mar Poll Bull 162:111916

  • Oza RM (1977) Culture Studies on induction of tetraspores and their subsequent development in the red alga Falkenbergia rufolanosa (Harvey) Schmitz. Bot Mar 20:29–32

  • Oza RM (1989) Growth of red alga Falkenbergia rufolanosa (Harvey) Schmitz in response to temperature, irradiance and photoperiod. Indian J Mar Sci 18:210–211

    Google Scholar 

  • Pacios I, Guerra-García JM, Baeza-Rojano E, Cabezas MP (2011) The non-native seaweed Asparagopsis armata supports a diverse crustacean assemblage. Mar Env Res 71:275–282

    Article  CAS  Google Scholar 

  • Padilla-Gamiño JL, Carpenter RC (2007) Seasonal acclimatization of Asparagopsis taxiformis (Rhodophyta) from different biogeographic regions. Limnol Oceanogr 52:833–842

    Article  Google Scholar 

  • Paul VJ, Nelson SG, Sanger HR (1990) Feeding preferences of adult and juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Mar Ecol Progr Ser 60:23–34

    Article  CAS  Google Scholar 

  • Paul NA, de Nys R, Steinberg PD (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87–101

    Article  CAS  Google Scholar 

  • Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Pedrosa R (2018) Marine invasive macroalgae: turning a real threat into a major opportunity-the biotechnological potential of Sargassum muticum and Asparagopsis armata. Algal Res 34:217–234

    Article  Google Scholar 

  • Rojas JJ, Lemus A, Ganesan EK (1982) El ciclo vital “in vitro” del alga marina roja Asparagopsis taxiformis (Delile) Collins & Hervey (Bonnemaisoniales, Rhodophyta) del Mar Caribe. Bol Inst Oceanogr Univ Oriente 21:101–112

    Google Scholar 

  • Romanazzi D, Sanchez-Garcia C, Svenson J, Mata L, Pes K, Hayman CM, Wheeler TT, Magnusson M (2021) Rapid analytical method for the quantification of bromoform in the red seaweeds Asparagopsis armata and Asparagopsis taxiformis using gas chromatography–mass spectrometry. ACS Ag Sci Technol 1:436–442

    Article  CAS  Google Scholar 

  • Roque BM, Salwen JK, Kinley R, Kebreab E (2019) Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J Clean Prod 234:132–138

    Article  CAS  Google Scholar 

  • Roque BM, Venegas M, Kinley RD, de Nys R, Duarte TL, Yang X, Kebreab E (2021) Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PloS One 16:e0247820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubal M, Costa-García R, Besteiro C, Sousa-Pinto I, Veiga P (2018) Mollusc diversity associated with the non-indigenous macroalgae Asparagopsis armata Harvey 1855, along the Atlantic coast of the Iberian Peninsula. Mar Env Res 136:1–7

    Article  CAS  Google Scholar 

  • Santelices B (1988) Algas marinas de Chile: distribución, ecología, utilización, diversidad. Ediciones Universidad Católica de Chile, Santiago, p 399

    Google Scholar 

  • Sauvageau C (1925) Sur la naturalisation en France d’une Floride´e australasienne de l’iode (Asparagopsis armata Harv.) et sur ses ioduques. Compt Rend Hebd Séanc l’Acad Sci 180:1887–1891

    Google Scholar 

  • Schmitz F, Hauptfleisch P (1897) Ceramiaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen unter Mitwirkung zahlreicher hervorragender Fachgelehrten, Teil 1, Abteilung 2. W. Engelmann, Leipzig, pp 481–504

    Google Scholar 

  • Schuenhoff A, Mata L, Santos R (2006) The tetrasporophyte of Asparagopsis armata as a novel seaweed biofilter. Aquaculture 252:3–11

    Article  Google Scholar 

  • Seguin MC, Franco A, Feno E, Moigne JY, Bredin F (1995) Extraction de composés organiques de silicium biologiquement actifs d’origine algale. French Patent FR 2732022

    Google Scholar 

  • Sherwood AR (2008) Phylogeography of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) in the Hawaiian Islands: two mtDNA markers support three separate introductions. Phycologia 47:79–88

    Article  CAS  Google Scholar 

  • Silva CO, Novais SC, Soares AMVM, Barata C, Lemos MFL (2020) Impacts of the invasive seaweed Asparagopsis armata exudate on the metabolisms or rock pool invertebrates. Toxins 13:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva CO, Lemos MFL, Gaspar R, Gonçalves C, Neto JM (2021) The effects of the invasive seaweed Asparagopsis armata on native rock pool communities: evidences from experimental exclusion. Ecol Ind 125:107463

    Article  Google Scholar 

  • Soler-Hurtado MM, Guerra-García JM (2011) Study of the crustacean community associated to the invasive seaweed Asparagopsis armata Harvey, 1855 along the coast of the Iberian Peninsula. Zool Baetica 22:33–49

    Google Scholar 

  • Streftaris N, Zenetos A (2006) Alien marine species in the Mediterranean-the 100 ‘Worst Invasives’ and their impact. Med Mar Sci 7:87–118

    Article  Google Scholar 

  • Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA, Melgar A, Hristov AN (2021) Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J Dairy Sci 104:4157–4173

    Article  CAS  PubMed  Google Scholar 

  • Svedelius N (1933) On the development of Asparagopsis armata Harv. & Bonnemaisonia aspragoides (Woodw.) Ag. A contribution to the cytology of the haplobiontic Rhodophyceae. Nova Acta R Soc Scient Upsal Ser 49:91–61

    Google Scholar 

  • Taylor WR (1945) Pacific marine algae of the Allan Hancock Expeditions to the Galapagos Islands. Allan Hancock Pacific Expeditions 12: i–iv, 1–528, 3 figs, 100 pls

  • Taylor RB (2019) Epiflora and epifauna. In: Fath B (ed) Encyclopedia of Ecology, vol 3, 2nd edn. Elsevier, Amsterdam, pp 375–380

    Chapter  Google Scholar 

  • Thapa HR, Lin Z, Yi D, Smith JE, Schmidt EW, Agarwal V (2020) Genetic and biochemical reconstitution of bromoform biosynthesis in Asparagopsis lends insights into seaweed reactive oxygen species enzymology. ACS Chem Biol 15:1662–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thépot V, Campbell AH, Rimmer MA, Jelocnik M, Johnston C, Evans B, Paul NA (2021) Dietary inclusion of the red seaweed Asparagopsis taxiformis boosts production, stimulates immune response and modulates gut microbiota in Atlantic salmon, Salmo salar.

  • Thomas OC, Subbaramaiah K (1990) Seasonal variation in the natural growth of Aspagopsis delilei Montagne from the Mandapam region, east coast of India. Indian J Mar Sci 19:148–150

    Google Scholar 

  • Thomsen MS, Wernberg T, Altieri A, Tuya F, Gulbransesn D, MacGlathery KJ, Holmer M, Silliman BR (2010) Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr Comp Biol 50:158–175

    Article  PubMed  Google Scholar 

  • Torres R, Mata L, Santos R, Alexandre A (2021) Nitrogen uptake kinetics of an enteric methane inhibitor, the red seaweed Asparagopsis armata. J Appl Phycol

  • Trevisan VBA (1845) Nomenclator algarum, ou collection des noms imposées aux plantes de la famille des algues. Imprimerie du Seminaire, Padoue [Padua] pp. 1–80

  • Tuya F, Haroun RJ (2006) Spatial patterns and response to wave exposure of shallow water algal assemblages across the Canarian archipelago: a multi-scaled approach. Mar Ecol Prog Ser 311:15–28

    Article  Google Scholar 

  • Vasuki S, Ganesan M, Subba Rao PV, Mairh OP (1999) Seasonal growth and reproduction of marine red alga Aspagopsis delilei (Rhodophyta/Bonnemaisoniales) from the Mandapam region, southeast coast of India. Indian J Mar Sci 28:60–65

    Google Scholar 

  • Vergés A, Paul NA, Steinberg PD (2008) Sex and life-history stage alter herbivore responses to a chemically defended red alga. Ecology 89:1334–1343

    Article  PubMed  Google Scholar 

  • Verlaque M (1994) Inventaire des plantes introduites en Méditerranée: origines et répercussions sur l’environment et les activités humaines. Oceanol Acta 17:1–23

    Google Scholar 

  • Vucko MJ, Magnusson M, Kinley RD, Villar C, de Nys R (2017) The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. J Appl Phycol 29:1577–1586

    Article  CAS  Google Scholar 

  • Wangensteen OS, Cebrian E, Palacín C, Turon X (2018) Under the canopy: community-wide effects of invasive algae in marine protected areas revealed by metabarcoding. Mar Poll Bull 127:54–66

    Article  CAS  Google Scholar 

  • Warwick RM (1977) The structure and seasonal fluctuations of phytal marine nematode associations on the isles of Scilly. In: Keegan BF, Ceidigh P, Boaden PJS (eds) Biology of benthic organisms. Pergamon, Oxford, pp 577–585

    Chapter  Google Scholar 

  • Werner A, Clarke D, Kraan S (2004) Strategic review of the feasibility of seaweed aquaculture in Ireland. NDP Marine RTDI Desk Study Series, DK/01/008.2004, p. 120

  • Westbrook MA (1930) Notes on the distribution of certain marine red algae. J Bot Lond 68:257–264

    Google Scholar 

  • Womersley HBS (1996) The marine benthic flora of Southern Australia. Part IIIB. Australian Biological Resources Study, Canberra, Australia, 392 p

  • Woolard FX (1977) Marine algal chemistry: I Halogenated constituents of Chondrococcus hornemanni (Mertens) Schmitz. II Halogenated constituents of A. taxiformis (Delile) Trev. III Studies on the biogenesis of dictyopterene hydrocarbons and sulfur compounds. PhD Thesis, University of Hawai'i at Manoa.

  • Wylie CR, Paul VJ (1988) Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar Ecol Progr Ser 45:23–32

    Article  CAS  Google Scholar 

  • Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS (2015) Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol 7:2394–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanolla M, Carmona R, De la Rosa J, Salvador N, Sherwood AR, Andreakis N, Altamirano M (2014) Morphological differentiation of cryptic lineages within the invasive genus Asparagopsis (Bonnemaisoniales, Rhodophyta). Phycologia 53:233–242

    Article  Google Scholar 

  • Zanolla M, Altamirano M, Carmona R, De la Rosa J, Sherwood AR, Andreakis N (2015) Photosynthetic plasticity of the genus Asparagopsis (Bonnemaisoniales, Rhodophyta) in response to temperature: implications for invasiveness. Biol Inv 17:1341–1353

    Article  Google Scholar 

  • Zanolla M, Altamirano M, De la Rosa J, Niell FX, Carmona R (2017a) Size structure and dynamics of an invasive population of lineage 2 of Asparagopsis taxiformis (Florideophyceae) in the Alboran Sea. Phycol Res 66:45–51

  • Zanolla M, Carmona R, Altamirano M (2017b) Reproductive ecology of an invasive population of lineage 2 of Asparagopsis taxiformis (Bonnemaisoniales Rhodophyta) in the Alboran Sea (Southern Mediterranean Sea). Bot Mar 60:627–638

  • Zanolla M, Altamirano M, Carmona R, De la Rosa J, Souza-Egipsy V, Sherwood A, Tsiamis K, Barbosa AM, Muñoz AM, Andreakis N (2018a) Assessing global range expansion in a cryptic species complex: insights from the red seaweed genus Asparagopsis (Florideophyceae). J Phycol 54:12–24

  • Zanolla M, Carmona R, De la Rosa J, Altamirano M (2018b) Structure and temporal dynamics of a seaweed assemblage dominated by the invasive lineage 2 of Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) in the Alboran Sea. Med Mar Sci 19:147–155

  • Zanolla M, Altamirano M, Niell FX, Carmona R (2019) There is more than meets the eye: primary production of the invasive seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) is provided by six cohorts with distinctive characteristics. Aquat Bot 153:24–28

    Article  Google Scholar 

Download references

Funding

M. Zanolla is funded by the AXA Research Fund (2019-AXA-THEME1-021, “Valorisation potential of invasive seaweed species in Ireland”). This review is part of the project RUGULOPTERYX funded by Fundación Biodiversidad (Marine Conservation 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianela Zanolla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanolla, M., Carmona, R., Mata, L. et al. Concise review of the genus Asparagopsis Montagne, 1840. J Appl Phycol 34, 1–17 (2022). https://doi.org/10.1007/s10811-021-02665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02665-z

Keywords

Navigation