Skip to main content
Log in

Tall Oil Fatty Acid Epoxidation Using Homogenous and Heterogeneous Phase Catalysts

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Tall oil fatty acids were epoxidized by in-situ generation of peracetic acid in the presence of two different acidic catalysts, commonly used catalyst—sulfuric acid and ion exchange resin. The described epoxidation was carried out without the use of organic solvents to comply with the principles of Green chemistry. The epoxidation process was monitored by the change of the relative oxirane conversion and alkenic unsaturation. Furthermore, the changes in the chemical structure of the epoxidized tall oil fatty acids were investigated using FTIR spectroscopy. It was shown that ion exchange resin Amberlite IR-120 H catalyst was superior to sulfuric acid catalyst as it delivered fewer by-products from oxirane group opening reactions. The oxirane value reached up to 2.31 mmol/g of epoxy groups, which is 41.9% of theoretically possible oxirane oxygen yield, when tall oil was epoxidized using Amberlite IR-120 H. The reusability of ion exchange resin was also studied, the 6.2% decrease in relative oxirane conversion value was registered after Amberlite IR-120 H was reused up to 10 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from [26])

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963. https://doi.org/10.1039/C3GC41935E

    Article  CAS  Google Scholar 

  2. Philp J (2018) The bioeconomy, the challenge of the century for policy makers. N Biotechnol 40:11–19. https://doi.org/10.1016/j.nbt.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143. https://doi.org/10.1016/j.progpolymsci.2016.12.009

    Article  CAS  Google Scholar 

  4. Ionescu M (2007) Chemistry and technology of polyols for polyurethanes. CRC Press, Boca Raton

    Google Scholar 

  5. De MonteroEspinosa L, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science?! Eur Polym J 47:837–852. https://doi.org/10.1016/j.eurpolymj.2010.11.020

    Article  CAS  Google Scholar 

  6. Biermann U, Bornscheuer U, Meier MAR et al (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:3854–3871. https://doi.org/10.1002/anie.201002767

    Article  CAS  Google Scholar 

  7. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155. https://doi.org/10.1080/15583720701834224

    Article  CAS  Google Scholar 

  8. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046

    Article  CAS  Google Scholar 

  9. Balo F (2014) Feasibility study of “green” insulation materials including tall oil: environmental, economical and thermal properties. Energy Build 86:161–175. https://doi.org/10.1016/j.enbuild.2014.09.027

    Article  Google Scholar 

  10. Demirbas A (2011) Methylation of wood fatty and resin acids for production of biodiesel. Fuel 90:2273–2279. https://doi.org/10.1016/j.fuel.2011.02.037

    Article  CAS  Google Scholar 

  11. Desroches M, Escouvois M, Auvergne R et al (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79. https://doi.org/10.1080/15583724.2011.640443

    Article  CAS  Google Scholar 

  12. Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: A review. Polym Plastics Technol Eng 49:1581–1590. https://doi.org/10.1080/03602559.2010.512338

    Article  CAS  Google Scholar 

  13. Saurabh T, Patnaik M, Bhagt SL, Renge VC (2011) Epoxidation of vegetable oils: a review. Int J Adv Eng Technol 2:491–501

    Google Scholar 

  14. Patel MM, Patel BP, Patel NK (2012) Utilization of soya-based polyol for High solid PU-coating application. Int J Plastics Technol 16:67–79. https://doi.org/10.1007/s12588-012-9030-8

    Article  CAS  Google Scholar 

  15. Lee PL, Wan Yunus WMZ, Yeong SK et al (2009) Optimization of the epoxidation of methyl ester of palm fatty acid distillate. J Oil Palm Res 21:675–682

    Google Scholar 

  16. Mungroo R, Pradhan NC, Goud VV, Dalai AK (2008) Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. J Am Oil Chem Soc 85:887–896. https://doi.org/10.1007/s11746-008-1277-z

    Article  CAS  Google Scholar 

  17. Omonov TS, Kharraz E, Curtis JM (2016) The epoxidation of canola oil and its derivatives. RSC Adv 6:92874–92886. https://doi.org/10.1039/C6RA17732H

    Article  CAS  Google Scholar 

  18. Kirpluks M, Kalnbunde D, Walterova Z, Cabulis U (2017) Rapeseed oil as feedstock for high functionality polyol synthesis. J Renew Mater 5:1–23. https://doi.org/10.7569/JRM.2017.634116

    Article  Google Scholar 

  19. Abolins A, Yakushin V, Vilsone D (2018) Properties of polyurethane coatings based on linseed oil phosphate ester polyol. J Renew Mater 6:1000. https://doi.org/10.32604/JRM.2018.00119

    Article  Google Scholar 

  20. Sinadinovic-Fiser S, Jankovi M, Borota O (2012) Epoxidation of castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem Eng Process Process Intensif 62:106–113. https://doi.org/10.1016/j.cep.2012.08.005

    Article  CAS  Google Scholar 

  21. Goud VV, Patwardhan AV, Dinda S, Pradhan NC (2007) Kinetics of epoxidation of jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chem Eng Sci 62:4065–4076. https://doi.org/10.1016/j.ces.2007.04.038

    Article  CAS  Google Scholar 

  22. Hazmi ASA, Aung MM, Abdullah LC et al (2013) Producing Jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod 50:563–567. https://doi.org/10.1016/j.indcrop.2013.08.003

    Article  CAS  Google Scholar 

  23. Meshram PD, Puri RG, Patil HV (2011) Epoxidation of wild safflower (Carthamus oxyacantha) oil with peroxy acid in presence of strongly acidic cation exchange resin IR-122 as catalyst. Int J ChemTech Res 3:1152–1163

    CAS  Google Scholar 

  24. Goud VV, Patwardhan AV, Pradhan NC (2006) Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresour Technol 97:1365–1371. https://doi.org/10.1016/j.biortech.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  25. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour Technol 99:3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  26. Goud VV, Patwardhan AV, Dinda S, Pradhan NC (2007) Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur J Lipid Sci Technol 109:575–584. https://doi.org/10.1002/ejlt.200600298

    Article  CAS  Google Scholar 

  27. de Haro JC, Izarra I, Rodríguez JF et al (2016) Modelling the epoxidation reaction of grape seed oil by peracetic acid. J Clean Prod 138:70–76. https://doi.org/10.1016/j.jclepro.2016.05.015

    Article  CAS  Google Scholar 

  28. Danov SM, Kazantsev OA, Esipovich AL et al (2017) Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catal Sci Technol 7:3659–3675. https://doi.org/10.1039/c7cy00988g

    Article  CAS  Google Scholar 

  29. Kurańska M, Beneš H, Prociak A et al (2019) Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. J Clean Prod 236:1000. https://doi.org/10.1016/j.jclepro.2019.117615

    Article  CAS  Google Scholar 

  30. Hagström AEV, Törnvall U, Nordblad M et al (2011) Chemo-enzymatic epoxidation-process options for improving biocatalytic productivity. Biotechnol Prog 27:67–76. https://doi.org/10.1002/btpr.504

    Article  CAS  PubMed  Google Scholar 

  31. Farias M, Martinelli M, Bottega DP (2010) Epoxidation of soybean oil using a homogeneous catalytic system based on a molybdenum (VI) complex. Appl Catal A Gen 384:213–219. https://doi.org/10.1016/j.apcata.2010.06.038

    Article  CAS  Google Scholar 

  32. Neilands O (1977) Organiska kimija. ZVAIGZNE, Riga

    Google Scholar 

  33. Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  34. Musante RL, Grau RJ, Baltanás MA (2000) Kinetic of liquid-phase reactions catalyzed by acidic resins: the formation of peracetic acid for vegetable oil epoxidation. Appl Catal A Gen 197:165–173. https://doi.org/10.1016/S0926-860X(99)00547-5

    Article  CAS  Google Scholar 

  35. Sinadinović-Fišer S, Janković M, Petrović ZS (2001) Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J Am Oil Chem Soc 78:725–731. https://doi.org/10.1007/s11746-001-0333-9

    Article  Google Scholar 

  36. Törnvall U, Börjesson P, Tufvesson LM, Hatti-Kaul R (2009) Biocatalytic production of fatty epoxides from rapeseed & tall oil derivatives: process & environmental evaluation. Ind Biotechnol 5:184–192. https://doi.org/10.1089/ind.2009.3.184

    Article  Google Scholar 

  37. Petrović ZS, Zlatanić A, Lava CC, Sinadinović-Fišer S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids—kinetics and side reactions. Eur J Lipid Sci Technol 104:293–299. https://doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W

  38. Sad N, Polymer K (2001) Kinetics of in situ epoxidation of soybean oil in bulk catalyzed by ion exchange resin. J Am Oil Chem Soc 78(7):725–731

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the European Regional Development Fund “Rigid Polyurethane/Polyisocyanurate Foam Thermal Insulation Material Reinforced with Nano/MicroSize Cellulose” (Grant No. 1.1.1.1/16/A/031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnis Abolins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolins, A., Kirpluks, M., Vanags, E. et al. Tall Oil Fatty Acid Epoxidation Using Homogenous and Heterogeneous Phase Catalysts. J Polym Environ 28, 1822–1831 (2020). https://doi.org/10.1007/s10924-020-01724-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01724-9

Keywords

Navigation