Skip to main content

Advertisement

Log in

Natural products as leads to potential mosquitocides

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Mosquitoes are the crucial vectors for a number of mosquito-borne infectious diseases i.e. dengue, yellow fever, chikungunya, malaria, Rift Valley fever, elephantiasis, Japanese Encephalitis, and Murray Valley encephalitis etc. Besides, they also transmit numerous arboviruses (arthropod-borne viruses) for example West Nile virus, Saint Louis encephalitis virus, Eastern equine encephalomyelitis virus, Everglades virus, Highlands J virus, and La Crosse Encephalitis virus. The emergence of widespread insecticide resistance and the potential environmental issues associated with some synthetic insecticides (such as DDT) has indicated that additional approaches to control the proliferation of mosquito population would be an urgent priority research. The present review highlights some natural product mosquitocides that are target-specific, biodegradable, environmentally safe, and botanicals in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adikaram NKB, Karunaratne V, Bandare BMR, Hewage CM, Abayasekara C, Mendis BSS (2002) Antifungal properties of Plumbagin. J Natn Sci Found Sri Lanka 30:89–95

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2:1–12

    Google Scholar 

  • Alarif WM, Abou-Elnaga ZS, Ayyad S-EN, Al-lihaibi SS (2010) Insecticidal metabolites from the green alga Caulerpa racemosa. Clean: Soil, Air, Water 38:548–557

    CAS  Google Scholar 

  • Albuquerque MRJR, Silveira ER, Uchoa DEDA, Lemos TLG, Souza EB, Santiago GMP, Pessoa ODL (2004) Chemical composition and larvicidal activity of the essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). J Agric Food Chem 52:6708–6711

    CAS  PubMed  Google Scholar 

  • Al-Doghairi M, El-Nadi A, El-hag E, Al-Ayedh H (2004) Effect of Solenostemma argel on oviposition, egg hatchability and viability of Culex pipiens L larvae. Phytother Res 18:335–338

    PubMed  Google Scholar 

  • Al-Sharook Z, Balan K, Jiang Y, Rembold H (1991) Insect growth inhibitors from two tropical meliaceae, effects of crude seed extracts on mosquito larvae. J Appl Entomol 111:425–430

    Google Scholar 

  • Amin E, El-Hawary SS, Fathy MM, Mohammed R, Ali Z, Tabanca N, Wedge DE, Becnel JJ, Khan IA (2011) Triterpenoidal saponins: bioactive secondary metabolites from Zygophyllum coccineum. Planta Med 77:488–491

    CAS  PubMed  Google Scholar 

  • Amin E, Radwan MM, El-Hawary SS, Fathy MM, Mohammed R, Becnel JJ, Khan I (2012) Potent insecticidal secondary metabolites from the medicinal plant Acanthus montanus. Rec Nat Prod 6:301–305

    CAS  Google Scholar 

  • Anees AM (2008) Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol Res 103:1451–1453

    PubMed  Google Scholar 

  • Anstrom DM, Zhou X, Kalk CN, Song B, Lan Q (2012) Mosquitocidal properties of natural product compounds isolated from Chinese herbs and synthetic analogs of Curcumin. J Med Entomol 49:350–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Araujo EC, Silveira ER, Lima MA, Neto MA, de Andrade IL, Lima MA, Santiago GM, Mesquita AL (2003) Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. J Agric Food Chem 51:3760–3762

    CAS  PubMed  Google Scholar 

  • Arivoli S, Tennyson S (2011) Studies on the mosquitocidal activity of (L.) spreng (Rutaceae) leaf extracts against, and (Diptera: Culicidae) Murraya koenigii Aedes aegypti Anopheles stephensi Culex quinquefasciatus. Asian J Exp Biol Sci 2:721–730

    Google Scholar 

  • Arjunan N, Murugan K, Madhiyazhagan P, Kovendan K, Prasannakumar K, Thangamani S, Barnard DR (2012) Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus leaf extracts against the mosquito vectors. Parasitol Res 110:1435–1443

    PubMed  Google Scholar 

  • Bagavan A, Kamaraj C, Rahuman A, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res 104:1109–1117

    CAS  PubMed  Google Scholar 

  • Balandrin M, Klocke J, Wurtele ES, Bollinger WH (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160

    CAS  PubMed  Google Scholar 

  • Bandara KANP, Kumar V, Jacobsson U, Molleyres LP (2000) Insecticidal piperidine alkaloid from Microcos paniculata stem bark. Phytochemistry 54:29–32

    CAS  PubMed  Google Scholar 

  • Baraza LD, Joseph CC, Munissi JJE, Nkunya MHH, Arnold N, Porzel A, Wessjohann L (2008) Antifungal rosane diterpenes and other constituents of Hugonia castaneifolia. Phytochemistry 69:200–205

    CAS  PubMed  Google Scholar 

  • Boulogne I, Petit P, Ozier-Lafontaine H, Desfontaines L, Loranger-Merciris G (2012) Insecticidal and antifungal chemicals produced by plants: a review. Environ Chem Lett 10:325–347

    CAS  Google Scholar 

  • Breytenbach JC, Rall GJH (1980) Structure and synthesis of isoflavonoid analogues from Neorautanenia amboensis Schinz. J Chem Soc Perkin 1:1804–1809

    Google Scholar 

  • Bringmann G, Rfibenacker M, Jansen JR, Scheutzow D (1990) On the structure of the dioncophyllaceae alkaloids dioncophylline a (“triphyophylline”) and “O-Methyl-Triphyophylline. Tetrahedron Lett 31:639–642

    CAS  Google Scholar 

  • Chaithong U, Choochote W, Kamsuk K, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006) Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J Vector Ecol 31:138–144

    PubMed  Google Scholar 

  • Champagne DE, Koul O, Isman MB, Scudder GGE, Towers GHN (1992) Biological activity of limonoids from the rutales. Phytochemistry 31:377–394

    CAS  Google Scholar 

  • Chauret DC, Bernard CB, Arnason JT, Durst T (1996) Insecticidal neolignans from Piper decurrens. J Nat Prod 59:152–155

    CAS  PubMed  Google Scholar 

  • Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OMZ (2003) Shikonin, a component of Chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob Agents Chemother 47:2810–2816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400

    CAS  PubMed  Google Scholar 

  • Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Biores Technol 100:452–456

    CAS  Google Scholar 

  • Choochate W, Chaiyasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, Pitasawat B (2005) Chemical composition and antimosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol 30:302–309

    Google Scholar 

  • Chowdhury N, Ghosh A, Chandra G (2008a) Mosquito larvicidal activities of Solanum villosum berry extract against the Dengue vector Stegomyia aegypti. BMC Complement Alter Med 8:10

    Google Scholar 

  • Chowdhury N, Laskar S, Chandra G (2008b) Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Alter Med 8:62

    Google Scholar 

  • Chowdhury N, Chatterjee SK, Laskar S, Chandra G (2009) Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J Pest Sci 82:13–18

    Google Scholar 

  • Ciccia G, Coussio J, Mongelli E (2000) Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants. J Ethnopharmacol 72:185–189

    CAS  PubMed  Google Scholar 

  • Clifford LJ, Nair MG, Rana J, Dewitt DL (2002) Bioactivity of alkamides isolated from Echinacea purpurea (L.) Moench. Phytomedicine 9:249–253

    CAS  PubMed  Google Scholar 

  • Das NG, Goswami D, Rabha B (2007) Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vect Borne Dis 44:145–148

    CAS  Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    CAS  PubMed  Google Scholar 

  • Deshmukh M, Pawar P, Joseph M, Phalgune U, Kashalkar R, Deshpande NR (2008) Efficacy of 4-methyl-7-hydroxy coumarin derivatives against vectors Aedes aegypti and Culex quinquefasciatus. Indian J Exp Biol 46:788–792

    CAS  PubMed  Google Scholar 

  • Dorni AIC, Vidyalakshmi KS, Vasanthi RH, Rajamanickam GV, Dubey GP (2007) HPTLC method for the quantification of plumbagin in three Plumbago species. Res J Phytochem 1:46–51

    Google Scholar 

  • Eckenbach U, Lampman RL, Seigler DS, Ebinger J, Novak RJ (1999) Mosquitocidal activity of acetylenic compounds from Cryptotaenia Canadensis. J Chem Ecol 25:1885–1893

    CAS  Google Scholar 

  • Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA (2011) Screening for feeding deterrent activity of herbal extracts against the larvae of malaria vector Anopheles subpictus Grassi. Parasitol Res 109:715–726

    PubMed  Google Scholar 

  • Erler F, Ulug I, Yalcinkaya B (2006) Repellent activity of five essential oils against Culex pipiens. Fitoterapia 77:491–494

    CAS  PubMed  Google Scholar 

  • Evans DA, Raj RK (1991) Larvicidal efficacy of Quassin against Culex quinquefasciatus. Indian J Med Res 93:324–327

    CAS  PubMed  Google Scholar 

  • Franqois G, Looveren MV, Timperman G, Chimanuka B, Assi LA, Holenz J, Bringmann G (1996) Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi. J Ethnopharmacol 54:125–130

    Google Scholar 

  • Ghosh A, Chandra G (2006) Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Nat Prod Res 20:371–379

    CAS  PubMed  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2008) Laboratory evaluation of a phytosteroid compound of mature leaves of day jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol Res 103:271–277

    PubMed  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillij YG, Gleiser RM, Zygadlo JA (2008) Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Biores Technol 99:2507–2515

    CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasil Res 103:691–695

    CAS  Google Scholar 

  • Greger H (1984) Alkamides: structural relationship, distribution and biological activity. Planta Med 50:366–375

    CAS  PubMed  Google Scholar 

  • Grodner ML (1997) http://aapse.ext.vt.edu/archives/97AAPCO_report

  • Haghbeen K, Mozaffarian V, Ghaffari F, Pourazeezi E, Saraji M, Joupari MD (2006) Lithospermum officinale callus produces shikalkin. Biol Bratislava 61:463–467

    CAS  Google Scholar 

  • Hemingway J (2004) Taking aim at mosquitoes. Nature 430:936

    CAS  PubMed  Google Scholar 

  • Hori M (2003) Repellency of essential oils against the cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Appl Entomol Zool 38:467–473

    CAS  Google Scholar 

  • Ioset JR, Marston A, Gupta MP, Hostettmann K (1998) Antifungal and larvicidal meroterpenoid naphthoquinones and a naphthoxirene from the roots of Cordia linnaei. Phytochemistry 47:729–734

    CAS  PubMed  Google Scholar 

  • Ioset JR, Marston A, Gupta MP, Hostettmann K (2000) Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry 53:613–617

    CAS  PubMed  Google Scholar 

  • Ioset JR, Marston A, Gupta MP, Hostettmann K (2001) Five new prenylated stilbenes from the root bark of Lonchocarpus chiricanus. J Nat Prod 64:710–715

    CAS  PubMed  Google Scholar 

  • Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25:339–344

    Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  Google Scholar 

  • Jackson FLC, Behkeit SS, EL-Etr SM, Quach NK (1990) Larvicidal effects of grain sorghum (Sorghum bicolor) seedling extracts upon Culex pipiens larvae. J Am Mosq Control Assoc 6:500–503

    CAS  PubMed  Google Scholar 

  • Jalees S, Sharma SK, Rahman SJ, Verghese T (1993) Evaluation of insecticidal properties of an indigenous plant, Cannabis sativa L., against mosquito larvae under laboratory conditions. J Entomol Res 17:117–120

    Google Scholar 

  • James AA (1992) Mosquito molecular genetics: the hands that feed bite back. Science 257:37–38

    CAS  PubMed  Google Scholar 

  • Jang YS, Baek BR, Yang YC, Kim MK, Lee HS (2002) Larvicidal activity of leguminous seeds and grains against Aedes aegypti and Culex pipiens pallens (Diptera: Culicidae). J Am Mosq Control Assoc 18:210–213

    PubMed  Google Scholar 

  • Jantan I, Yalvema MF, Ahmad NW, Jamal JA (2005) Insecticidal activities of the leaf oils of eight Cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm Biol 43:526–532

    Google Scholar 

  • Jayaprakasha GK, Singh RP, Pereira J, Sakariah KK (1997) Limonoids from Citrus reticulata and their moult inhibiting activity in mosquito Culex quinquefasciatus larvae. Phytochemistry 44:843–846

    CAS  PubMed  Google Scholar 

  • Joseph CC, Ndoile MM, Malima RC, Nkunya MHH (2004) Larvicidal and mosquitocidal extracts, a coumarin, isoflavonoids and pterocarpans from Neorautanenia mitis. Trans R Soc Trop Med Hygiene 98:451–455

    CAS  Google Scholar 

  • Jung J-C, Moon H-I (2011) Larvicidal activity of 4-hydroxycoumarin derivatives against Aedes aegypti. Pharm Biol 49:190–193

    CAS  PubMed  Google Scholar 

  • Kabir KE, Khan AR, Mosaddik MA (2003) Goniothalamin a potent mosquito larvicide from Bryonopsis laciniosa L. J Appl Entomol 127:112–115

    CAS  Google Scholar 

  • Kalyanasundaram M, Babu CJ (1982) Biologically active plant extracts as mosquito larvicides. Indian J Med Res 76:102–106

    PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA (2010) Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pacific J Trop Med 3:948–953

    Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Zahir AA, Elango G, Kandan P, Rajakumar G, Marimuthu S, Santhoshkumar T (2010) Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Trop Biomed 27:211–219

    CAS  PubMed  Google Scholar 

  • Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajkumar G, Mariamuthu S, Santhoshkumar T, Rahuman AA (2011) Larvicidal activity of medicinal plant extracts against Anopheles stephensi and Culex tritaeniorhynchus. Indian J Med Res 134:101–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karmegam N, Sakthivadivel M, Anuradha V, Daniel T (1997) Indigenous plant extracts as larvicidal agentsagainst Culex quinquefasciatus Say. Biores Technol 59:137–140

    CAS  Google Scholar 

  • Karunamoorthi K, Tsehaye E (2012) Ethnomedicinal knowledge, belief and self-reported practice of local inhabitants on traditional antimalarial plants and phytotherapy. J Ethnopharmacol 141:143–150

    PubMed  Google Scholar 

  • Karunamoorthi K, Mulelam A, Wassie F (2009) Assessment of knowledge and usage custom of traditional insect/mosquito repellent plants in Addis Zemen Town, South Gonder, North Western Ethiopia. J Ethnopharmacol 121:49–53

    PubMed  Google Scholar 

  • Kaushik R, Saini P (2008) Larvicidal activity of leaf extract of Millingtonia hortensis (Family: Bignoniaceae) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. J Vector Borne Dis 45:66–69

    CAS  PubMed  Google Scholar 

  • Kelm MA, Nair MG (1998) Mosquitocidal compounds and a triglyceride, 1,3- dilinoleneoyl-2-palmitin, from Ocimum sanctum. J Agric Food Chem 46:3092–3094

    CAS  Google Scholar 

  • Kelm MA, Nair MG, Schutzki RA (1997) Mosquitocidal Compounds from Magnolia Salicifolia. Int J Pharmacog 35:84–90

    CAS  Google Scholar 

  • Kern JR, Cardellina JH (1982) Native American Medicinal Plants, Falcarindiol and 3-O-methyl-falcarindiol from Osmorhiza occidentalis. J Nat Prod 45:774–776

    CAS  Google Scholar 

  • Khanna G, Kannabiran K (2007) Larvicidal effect of Hemidesmus indicus, Gymnema sylvestre, and Eclipta prostrata against Culex qinquifaciatus mosquito larvae. Afr J Biotechnol 6:307–311

    Google Scholar 

  • Khanna VG, Kannabiran K, Rajakumar G, Rahuman AA, Santhoshkumar T (2011) Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors. Parasitol Res 109:1373–1386

    PubMed  Google Scholar 

  • Kihampa C, Nkunya MHH, Joseph CC, Magesa SM (2010) Antimosquito Phenylpropenoids from the Stem and Root Barks of Uvariodendron pycnophyllum (Diels). J Appl Sci Environ Manage 14:29–32

    Google Scholar 

  • Kiprop AK, Rajab MS, Wanjala (2005) Isolation and characterization of larvicidal components against mosquito larvae (Aedes aegypti Linn.) from Calodendrum capense Thunb. Bull Chem Soc Ethiop 19:145–148

    CAS  Google Scholar 

  • Kiprop AK, Kiprono PC, Rajab MS, Kosgei MK (2007) Limonoids as Larvicidal Components against Mosquito Larvae (Aedes aegypti Linn.). Z Naturforsch 62:826–828

    CAS  Google Scholar 

  • Kiran SR, Devi PS (2007) Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia. Parasitol Res 101:413–418

    PubMed  Google Scholar 

  • Kishore N, Mishra BB, Tiwari VK, Tripathi V (2010) Difuranonaphthoquinones from Plumbago zeylanica roots. Phytochem Lett 3:62–65

    CAS  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012a) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110:571–581

    PubMed  Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Barnard DR (2012b) Mosquito larvicidal properties of Orthosiphon thymiflorus (Roth) Sleesen. (Family: Labiatae) against mosquito vectors, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Asian Pacific J Trop Med 5:299–305

    CAS  Google Scholar 

  • Krishnappa K, Elumalai K (2012) Toxicity of Aristolochia bracteata methanol leaf extract against selected medically important vector mosquitoes (Diptera: Culicidae). Asian Pacific J Trop Dis 2012:S553–S557

    Google Scholar 

  • Kumar A, Dutta GP (1987) Indigenous plant oils as larvicidal agents against Anopheles stephensi. Curr Sci 56:959–960

    Google Scholar 

  • Kumar PM, Murugan K, Kovendan K, Panneerselvam C, Kumar KP, Amerasan D, Subramaniam J, Kalimuthu K, Nataraj T (2012) Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol Res 111:609–618

    Google Scholar 

  • Kuo PM, Chu FH, Chang ST, Hsiao WF, Wang SY (2007) Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Hlzforschung 61:595–599

    CAS  Google Scholar 

  • Lalchhandama K (2011) Mosquitocidal activity of Millettia pachycarpa on the larvae and eggs of Aedis aegypti. Ann Biol Res 2:217–222

    Google Scholar 

  • Lee SE (2000) Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. J Am Mosq Control Assoc 16:245–247

    CAS  PubMed  Google Scholar 

  • Lee KH, Huang ES, Piandosi C, Pagano J (1971) Cytotoxicity of sesquiterpene lactones. Cancer Res 31:1649–1654

    CAS  PubMed  Google Scholar 

  • Lee SE, Park BS, Kim MK, Choi WS, Kim HT, Cho KY, Lee SG, Lee HS (2001) Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi. Crop Prot 20:523–528

    CAS  Google Scholar 

  • Liu R, Feng L, Sun A, Kong L (2004) Preparative isolation and purification of coumarins from Cnidium monnieri (L.) Cusson by high-speed counter-current chromatography. J Chromatogr A 1055:71–76

    CAS  PubMed  Google Scholar 

  • Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2012) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 110:2125–2130

    PubMed  Google Scholar 

  • Lukwa N, Nyazema NZ, Curtis CF, Mwaiko GL, Chandiwana SK (1999) People’s perceptions about malaria transmission and control using mosquito repellent plants in a locality in Zimbabwe. Cent Afr J Med 45:64–68

    CAS  PubMed  Google Scholar 

  • Madhu SK, Vijayan VA, Shaukath AK (2011) Bioactivity guided isolation of mosquito larvicide from Piper longum. Asian Pac J Trop Med 4:112–116

    CAS  PubMed  Google Scholar 

  • Madhua SK, Shaukath AK, Vijayan VA (2010) Efficacy of bioactive compounds from Curcuma aromatica against mosquito larvae. Acta Trop 113:7–11

    Google Scholar 

  • Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malaria J 10:S11

    CAS  Google Scholar 

  • Maniafu BM, Wilber L, Ndiege IO, Wanjala CC, Akenga TA (2009) Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae. Mem I Oswaldo Cruz 104:813–817

    CAS  Google Scholar 

  • Mansour SA, Messeha SS, EL-Gengaihi SE (2000) Botanical biocides. 4. Mosquitocidal activity of certain Thymus capitatus constituents. J Nat Toxins 9:49–62

    CAS  PubMed  Google Scholar 

  • Markouk M, Bekkouche K, Larhsini M, Bousaid M, Lazrek HB, Jana M (2000) Evaluation of some Moroccan medicinal plant extracts for larvicidal activity. J Ethnopharmacol 73:293–297

    CAS  PubMed  Google Scholar 

  • Matasyoh JC, Wathuta EM, Kairuki ST, Chepkorir R, Kavulani J (2008) Aloe plant extracts as alternative larvicides for mosquito control. Afr J Biotech 7:912–915

    CAS  Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    PubMed  Google Scholar 

  • Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava CN (2007) Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol Res 37:153–156

    Google Scholar 

  • Mavundza EJ, Maharaj R, Finnie JF, Kabera G, Van Staden J (2011) An ethnobotanical survey of mosquito repellent plants in uMkhanyakude district, KwaZulu-Natal province, South Africa. J Ethnopharmacol 137:1516–1520

    CAS  PubMed  Google Scholar 

  • Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, Van Bortel W (2012) A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis 12:435–447

    PubMed Central  PubMed  Google Scholar 

  • Mgbemena IC (2010) Comparative evaluation of larvicidal potentials of three plant extracts on Aedes aegypti. J Am Sci 6:435–440

    Google Scholar 

  • Michaelakis A, Strongilos AT, Bouzas EA, Koliopoulos G, Couladouros EA (2009) Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens. Parasitol Res 104:657–662

    PubMed  Google Scholar 

  • Miles JE, Ramsewak RS, Nair MG (2000) Antifeedant and mosquitocidal compounds from Delphinium x cultorum Cv. magic fountains flowers. J Agric Food Chem 48:503–506

    CAS  PubMed  Google Scholar 

  • Mishra BB, Tiwari VK (2011) Natural products: an evolving role in future drug discovery. Eur J Med Chem 46:4769–4807

    CAS  PubMed  Google Scholar 

  • Mishra BB, Kishore N, Tiwari VK, Singh DD, Tripathi V (2010a) A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family-Rutaceae). Fitoterapia 81:104–107

    CAS  PubMed  Google Scholar 

  • Mishra BB, Singh DD, Kishore N, Tiwari VK, Tripathi V (2010b) Antifungal constituents isolated from the seeds of Aegle marmelos. Phytochemistry 71:230–234

    CAS  PubMed  Google Scholar 

  • Miyazawa M, Shimamura H, Bhuva RC, Nakamura S, Kameoka H (1996) Antimutagenic activity of falcarindiol from Peucedanum praeruptorum. J Agric Food Chem 44:3444–3448

    CAS  Google Scholar 

  • Moawed HAM (1998) M.Sc., Thesis, Faculty of Science-Dmietta, Mansoura University

  • Mohan D, Ramaswamy M (2007) Evaluation of larvicidal activity of the leaf extract of a weed plant, Ageratina adenophora, against two important species of mosquitoes, Aedes aegypti and Culex quinquefasciatus. Afr J Biotech 6:631–638

    Google Scholar 

  • Mohan L, Sharma P, Shrivastava CN (2006) Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of filarial vector Culex quinquefasciatus (Say). Entomol Res 36:220–225

    Google Scholar 

  • Momin RA, Nair MG (2001) Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds. J Agric Food Chem 49:142–145

    CAS  PubMed  Google Scholar 

  • Momin RA, Nair MG (2002) Pest-managing efficacy of trans-Asarone Isolated from Daucus carota L. Seeds. J Agric Food Chem 50:4475–4478

    CAS  PubMed  Google Scholar 

  • Momin RA, Ramsewak RS, Nair MG (2000) Bioactive compounds and 1,3-Di[(cis)-9-octadecenoyl]-2-[(cis, cis)-9,12-octadecadienoyl]glycerol from Apium Graveolens L. Seeds. J Agric Food Chem 48:3785–3788

    CAS  PubMed  Google Scholar 

  • Monzon RB, Alvior JP, Luczon LL, Morales AS, Mutuc FE (1994) Larvicidal potential of five Philippine plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). Southeast Asian J Trop Med Public Health 25:755–759

    CAS  PubMed  Google Scholar 

  • Mulla MS, Su T (1999) Activity and biological effects of neem products against arthropods of medical and veterinary importance. J Am Mosq Control Assoc 15:133–152

    CAS  PubMed  Google Scholar 

  • Mullai K, Jebanesan A (2007) Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitacious plants against filarial vector Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 24:1–6

    CAS  PubMed  Google Scholar 

  • Mullai K, Jebanesan A, Pushpanathan T (2008) Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (cucurbitaceae) against the malarial vector, Anopheles stephensi liston (diptera culicidae). Euro Rev Med Pharma Sci 12:1–7

    CAS  Google Scholar 

  • Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Jatisatienr C, Lie W, Ung AT, Skelton BW, White AH (2004) Phytochemical and larvicidal studies on Stemona curtisii: structure of a new pyrido[1,2-a]azepine stemona alkaloid. J Nat Prod 67:675–677

    CAS  PubMed  Google Scholar 

  • Nair MG, Putnam AR, Mishra SK, Mulks MH, Taft WH, Keller JE, Miller JR, Zhu PP, Meinhart JD, Lynn DG (1989) Faeriefungin: a new broad-spectrum antibiotic from Streptomyces griseus var. autotrophicus. J Nat Prod 52:797–809

    CAS  PubMed  Google Scholar 

  • Nathan SS, Kalaivani K, Murugan K (2005) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55

    CAS  PubMed  Google Scholar 

  • Nathan SS, Hisham A, Jayakumar G (2008) Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 79:106–111

    CAS  PubMed  Google Scholar 

  • Nawamaki K, Kuroyanagi M (1996) Sesquiterpenoids from Acorus calamus as germination inhibitors. Phytochemistry 43:1175–1182

    CAS  Google Scholar 

  • Nazar S, Ravikumar S, Williams GP, Ali MS, Suganthi P (2009) Screening of Indian costal plant extracts for larvicidal activity of Culex quinquefasciatus. Indian J Sci Technol 2:24–27

    Google Scholar 

  • Ndungu M, Hassanali A, Hooper AM, Chhabra S, Miller TA, Paul RL, Torto B (2003) Ring A- seco mosquito larvicdal limonoids from Turraea wakefeldii. Phytochemistry 64:817–823

    CAS  Google Scholar 

  • Ndungu MW, Kaoneka B, Hassanali A, Lwande W, Hooper AM, Tayman F, Zerbe O, Torto B (2004) New mosquito larvicidal tetranortriterpenoids from Turraea wakefieldii and Turraea floribunda. J Agric Food Chem 52:5027–5031

    CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Biores Technol 101:372–378

    CAS  Google Scholar 

  • Nikkon F, Salam KA, Yeasmin T, Mosaddik A, Khondkar P, Haque ME (2010) Mosquitocidal triterpenes from the stem of Duranta repens. Pharm Biol 48:264–268

    CAS  PubMed  Google Scholar 

  • Ntalli NG, Menkissoglu-Spiroudi U (2011) Pesticides of botanical origin: a promising tool in plant protection. Pesticides—Formulation, Effects Fate, Prof. Margarita Stoytcheva (ed) ISBN: 978-953-307-532-7

  • Odalo JO, Omolo MO, Malebo H, Angira J, Njeru PM, Ndiege IO, Hassanali A (2005) Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop 95:210–218

    CAS  PubMed  Google Scholar 

  • Omena MC, Bento ES, Paula JE, Santana AEG (2006) Larvicidal Diterpenes from Pterodon polygalaeflorus. Vector Borne Zoonotic Dis 6:216–222

    PubMed  Google Scholar 

  • Omena MC, Navarro DM, de Paula JE, de Lima FMR, Santana AE (2007) Larvicidal activities against Aedes aegypti of Brazilian medicinal plants. Biores Technol 98:2549–2556

    Google Scholar 

  • Palsson K, Jaenson TG (1999) Plant products used as mosquito repellents in Guinea Bissau, West Africa. Acta Trop 72:39–52

    CAS  PubMed  Google Scholar 

  • Park H-M, Park I-K (2012) Larvicidal activity of Amyris balsamifera, Daucus carota and Pogostemon cablin essential oils and their components against Culex pipiens pallens. J Asia-Pacific Entomol 15:631–634

    CAS  Google Scholar 

  • Park IK, Lee SG, Shin SC, Park JD, Young-Joon AHN (2002) Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species. J Agric Food Chem 50:1866–1870

    CAS  PubMed  Google Scholar 

  • Park I-K, Shin S-C, Kim C-S, Lee H-J, Choi W-S, Ahn Y-J (2005) Larvicidal activity of Lignans identified in Phryma leptostachya Var. asiatica Roots against three mosquito species. J Agric Food Chem 53:969–972

    CAS  PubMed  Google Scholar 

  • Patel EK, Gupta A, Oswal RJ (2012) A review on: mosquito repellent methods. Int J Pharm Chem Biol Sci 2:310–317

    CAS  Google Scholar 

  • Pavela R, Vrchotova N, Triska J (2009) Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 105:1365–1370

    PubMed  Google Scholar 

  • Perich MJ, Wells C, Bertsch W, Tredway KE (1995) Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. J Am Mosq Control Assoc 11:307–310

    CAS  PubMed  Google Scholar 

  • Perrucci S, Cioni PL, Cascella A, Maccioni F (1997) Therapeutic efficacy of linalool for the topical treatment of parasitic otitis caused by Psoroptes cuniculi in the rabbit and in the goat. Med Vet Entomol 11:300–302

    CAS  PubMed  Google Scholar 

  • Pinto ACS, Nogueira KL, Chaves FCM, Silva LV, Souza da, Tadei WP, Pohlit AM (2012) Adulticidal activity of dillapiol and semi-synthetic derivatives of dillapiol against Aedes aegypti (L.) (Culicidae). J Mosq Res 2:1–7

    Google Scholar 

  • Pizarro AP, Oliveira FAM, Parente JP, Melo MT, dosSantos CE, Lima PR (1999) Utilization of the waste of sisal industry in the control of mosquito larvae. Rev Soc Bras Med Trop 32:23–29

    CAS  PubMed  Google Scholar 

  • Prabhakar K, Jebanesan A (2004) Larvicidal efficacy of some cucurbitacious plant leaf extracts against Culex quinquefasciatus. Biores Tech 95:113–114

    Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Biores Technol 96:1749–1757

    CAS  Google Scholar 

  • Pridgeon JW, Meepagala KM, Becnel JJ, Clark GG, Pereira RM, Linthicum KJ (2007) Structure-activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae). J Med Entomol 44:263–269

    CAS  PubMed  Google Scholar 

  • Pushpalatha E, Muthukrishnan J (1999) Efficacy of two tropical plant extracts for the control of mosquitoes. J Appl Entomol 123:369–373

    Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2008) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102:1289–1291

    PubMed  Google Scholar 

  • Puyvelde VL, Dekimpe N, Mudaharanwa JP, Gasiga A, Schamp N, Declerq JP, Meerssche VM (1987) Isolation and structural elucidation of potentially insecticidal and acaricidal isoflavone-type compounds from Neorautanenia mitis. J Nat Prod 50:349–356

    Google Scholar 

  • Radwan MA, El-Zemity SR, Mohamed SA, Sherby SM (2008) Larvicidal activity of some essential oils, monoterpenoids and their corresponding N-methyl carbamate derivatives against Culex pipiens (Diptera: Culicidae). Int J Trop Insect Sci 28:61–68

    CAS  Google Scholar 

  • Raghavendra K, Singh SP, Subbarao SK, Dash AP (2009) Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res 130:74–77

    CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103:133–139

    PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    CAS  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) sweet. Parasitol Res 102(5):981–988

    PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K, Bagavan A (2008b) Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale. Phytother Res 22:1035–1039

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2004) Mosquitocidal activity of octacosane from Moschosma polystachyum L. (Lamiaceae). J Ethnopharmacol 90:87–89

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2005a) Repellency of volatile oils from Moschosma polystachyum and Solanum xanthocarpum against filarial vector Culex quinquefasciatus say. Trop Biomed 22:139–142

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2005b) Larvicidal and adult emergence inhibition effect of Centella asiatica Brahmi (umbelliferae) against mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Afr J Biomed Res 8:31–33

    Google Scholar 

  • Rajkumar S, Jebanesan A (2008) Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 104:19–25

    CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

    CAS  PubMed  Google Scholar 

  • Ramsewak RS, Nair MG, DeWitt DL, Mattson WJ, Zasada J (1999a) Phenolic glycosides from Dirca palustris. J Nat Prod 62:1558–1561

    CAS  PubMed  Google Scholar 

  • Ramsewak RS, Nair MG, Strasburg GM, DeWitt DL, Nitiss JL (1999b) Biologically active carbazole alkaloids from Murraya koenigii. J Agric Food Chem 47:444–447

    CAS  PubMed  Google Scholar 

  • Ramsewak RS, Nair MG, Murugesan S, Mattson WJ, Zasada J (2001) Insecticidal fatty acids and triglycerides from Dirca palustris. J Agric Food Chem 49:5852–5856

    CAS  PubMed  Google Scholar 

  • Ranaweera SS (1996) Mosquito-larvicidal activity of some Sri Lankan plants. J Natl Sci Counc Sri Lanka 24:63–70

    Google Scholar 

  • Ratnayake R, Karunaratne V, Bandara BMR, Kumar V, MacLeod JK, Simmonds P (2001) Two new lactones with mosquito larvicidal activity from three Hortonia species. J Nat Prod 64:376–378

    CAS  PubMed  Google Scholar 

  • Rawani A, Mallick Haldar K, Ghosh A, Chandra G (2009) Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 105:1411–1417

    PubMed  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2010) Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res 107:1235–1240

    PubMed  Google Scholar 

  • Rey D, Pautou M-P, Meyran J-C (1999) Histopathological effects of tannic acid on the midgut epithelium of some aquatic Diptera larvae. J Invertebr Pathol 73:173–181

    CAS  PubMed  Google Scholar 

  • Ribeiro KAL, Carvalho CM, Molina MT, Lima EP, Lopez-Montero E, Reys JRM, Oliveira MBF, Pinto AV, Santana AEG, Goulart MOF (2009) Activities of naphthoquinones against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae), vector of dengue and Biomphalaria glabrata (Say, 1818), intermediate host of Schistosoma mansoni. Acta Trop 111:44–50

    CAS  PubMed  Google Scholar 

  • Rice PJ, Coats JR (1994) Insecticidal properties of monoterpenoid derivatives to the house fly (Diptera: Muscidae) and red flour beetle (Coleoptera: Tenebrionidae). Pestic Sci 41:195–202

    CAS  Google Scholar 

  • Roark RC (1947) Some promising insecticidal plants. Econ Bot 1:437–445

    CAS  Google Scholar 

  • Rodrigues AMS, Paula JE, Roblot F, Fournet A, Espíndola LS (2005) Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 76:755–757

    CAS  PubMed  Google Scholar 

  • Roth GN, Chandra A, Nair MG (1998) Novel bioactivities of Curcuma longa constituents. J Nat Prod 61:542–545

    CAS  PubMed  Google Scholar 

  • Sagnou M, Mitsopoulou KP, Koliopoulos G, Pelecanou M, Couladouros EA, Michaelakis A (2012) Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 123:190–195

    CAS  PubMed  Google Scholar 

  • Sah ML, Mishra D, Sah SP, Rana M (2010) Formulation and evaluation of herbal mosquito repellent preparations. Indian Drugs 47:45–50

    Google Scholar 

  • Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43:57–63

    Google Scholar 

  • Samidurai K, Jebanesan A, Saravanakumar A, Govindarajan M, Pushpanathan T (2009) Larvicidal, ovicidal and repellent activities of pemphis acidula forst against filarial and Dengue vector mosquitoes. Acad J Entomol 2:62–66

    CAS  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    CAS  PubMed  Google Scholar 

  • Severini C, Rom R, Marinucci M, Rajmond M (1993) Mechanisms of insecticide resistance in field populations of Cu1ex pipiens from Italy. J Am Mosq Control Assoc 9:164–168

    CAS  PubMed  Google Scholar 

  • Seyoum A, Palsson K, Kunga S, Kabiru EW, Lwande W, Killeen GF, Hassanali A, Knols BG (2002) Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hygiene 96:225–231

    CAS  Google Scholar 

  • Shaalan E, Canyon DV, Faried MW, Abdel-Wahab H, Mansour A (2003) The annual Queensland health and medical scientific meeting, making it better: encouraging health research and innovation, 25–26 Nov, Brisbane

  • Shaalan E, Canyon D, Faried MW, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    CAS  PubMed  Google Scholar 

  • Sharma M, Saxena RC (1994) Phytotoxicological evaluation of Tagetes erectes on aquatic stages of Anopheles stephens. Ind J Malar 31:21–26

    CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2006) Phytoextract-induced developmental deformities in malaria vector. Biores Technol 97:1599–1604

    CAS  Google Scholar 

  • Siddiqui BS, Afshan F, Faizi S, Naqvi SN-ul-H, Tariq RM (2002) Two New Triterpenoids from Azadirachta indica and Their Insecticidal Activity. J Nat Prod 65:1216–1218

    CAS  PubMed  Google Scholar 

  • Singh RK, Dhiman RC, Mittal PK (2006) Mosquito larvicidal properties of Momordica charantia Linn (Family: Cucurbitaceae). J Vect Borne Dis 43:88–91

    CAS  Google Scholar 

  • Sivagnaname S, Kalyanasundaram M (2004) Laboratory evaluation of Methanolic extract of Atlanta monophylla (Family: Rutaceae) against immature stage of mosquitoes and nontarget organisms. Mem Inst Oswaldo Cruz 99:115–158

    CAS  PubMed  Google Scholar 

  • Soliman BA, El-Sherif LS (1995) Larvicidal effect of some plant oils on mosquito Culex pipiens L (Diptera: Culicidae). J Egypt Ger Soc Zool 16:161–169

    Google Scholar 

  • Sreelatha TT, Hymavathi A, Murthy JM, Rani PU, Rao JM, Babu KS (2010) Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis. Bioorg Med Chem Lett 20:2974–2977

    CAS  PubMed  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Contr Assoc 7:210–237

    CAS  Google Scholar 

  • Sun R, Sacalis JN, Chin CK, Still CC (2001) Bioactive aromatic compounds from leaves and stems of Vanilla fragrans. J Agric Food Chem 49:5161–5164

    CAS  PubMed  Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Annu Rev Plant Physiol 28:479–501

    CAS  Google Scholar 

  • Thangam TS, Kathiresan K (1991) Mosquito larvicidal activity of marine plants extracts with synthetic insecticides. Bot Mar 34:537–539

    Google Scholar 

  • Thomas CJ, Callaghan A (1999) The use of Garlic (Allium Sativa) and Lemon Peel (Citrus Limon) Extracts as Culex Pipiens Larvacides: Persistence and Interaction with an Organophosphate Resistance Mechanism. Chemosphere 39:2489–2496

    CAS  Google Scholar 

  • Todd GD, Wohlers D, Citra M (2003) Toxicology profile for Pyrethrins and pyrethroids. Department of Health and Human Services, Agency for toxic substances and disease registry, Atlanta, GA

    Google Scholar 

  • Tolle MA (2009) Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39:97–140

    PubMed  Google Scholar 

  • Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NA, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 61:597–604

    CAS  PubMed  Google Scholar 

  • Tripathy A, Samanta L, Das S, Parida SK, Marai N, Hazra RK, Mallavdani UV, Kar SK, Mahapatra N (2011) The mosquitocidal activity of methanolic extracts of Lantana cramera root and Anacardium occidentale leaf: role of glutathione S-transferase in insecticide resistance. J Med Entomol 48:291–295

    CAS  PubMed  Google Scholar 

  • Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytother Res 19:303–309

    CAS  PubMed  Google Scholar 

  • Tunon H, Thorsell W, Mikiver A, Malander I (2006) Arthropod repellency, especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia 77:257–261

    CAS  PubMed  Google Scholar 

  • Urbanek H, Bergier K, Saniewski M, Patykowski J (1996) Effect of jasmonates and exogenous polysaccharides on production of alkannin pigments in suspension cultures of Alkanna tinctoria. Plant Cell Rep 15:637–641

    CAS  PubMed  Google Scholar 

  • Vasconcelos JN, Lima JQ, Lemos TLG, Oliveira MCF, Almeida MMB, Andrade-Neto M, Mafezoli J, Arriaga AMC, Santiago GMP, Braz-Filho R (2009) Chemical and biological study of the Tephrosia toxicaria Pers. Quim Nova 32:382–386

    Google Scholar 

  • Vasconcelos JN, Santiago GMP, Lima JQ, Mafezoli J, Gomes de Lemos TL, Lopes da Silva FR, Lima MAS, Pimenta ATA, Arriaga RB-F, Campos AM, Cesarin-Sobrinho D (2012) Rotenoids from Tephrosia toxicaria with larvicidal activity against Aedes aegypti, the main vector of dengue fever. Quim Nova 35:1097–1100

    Google Scholar 

  • Vasudevan K, Malarmagal R, Charulatha H, Saraswatula VL, Prabakaran K (2009) Larvicidal effects of crude extracts of dried ripened fruits of Piper nigrum against Culex quinquefasciatus larval instars. J Vector Borne Dis 46:153–156

    CAS  PubMed  Google Scholar 

  • Wandscheer CB, Duque JE, daSilva MAN, Fukuyama Y, Wohlke JL, Adelmann J, Fontana JD (2004) Larvicidal action of ethanolic extracts from fruit endocarps of Melia azedarach and Azadirachta indica against the dengue mosquito Aedes aegypti. Toxicon 44:829–835

    CAS  PubMed  Google Scholar 

  • Wang Z, Kim J-R, Wang M, Shu S, Ahn Y-J (2012) Larvicidal activity of Cnidiummon nieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Manag Sci 68:1041–1047

    CAS  PubMed  Google Scholar 

  • Wood A (2003) http://www.alanwood.net/pesticides/index

  • Xiao XM, Hu ZN, Shi BJ, Wei SP, Wu WJ (2012) Larvicidal activity of lignans from Phryma leptostachya L. against Culex pipiens pallens. Parasitol Res 110:1079–1084

    PubMed  Google Scholar 

  • Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS (2002) A Piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem 50:3765–3767

    CAS  PubMed  Google Scholar 

  • Yang P, Yajun M, Zheng S (2005) Adulticidal activity of five essential oils against Culex pipiens quinquefasciatus. J Pest Sci 30:84–89

    CAS  Google Scholar 

  • Yenesew A, Derese S, Midiwo JO, Heydenreich M, Peter MJ (2003) Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti. Pest Manage Sci 59:1159–1161

    CAS  Google Scholar 

  • Youssif RS, Shaalan EA (2011) Mosquitocidal activity of some volatile oils against Aedes caspius Mosquitoes. J Vector Borne Dis 48:113–115

    CAS  PubMed  Google Scholar 

  • Zahran HE-DM, Abdelgaleil SAM (2010) Larvicidal, adulticidal and growth inhibitory effects of monoterpenes on Culex pipiens L. (Diptera: Culicidae). J Agric Res Kafer El-Sheikh Univ 36:385–401

    Google Scholar 

  • Zaridah MZ, Azah MA, Rohani A (2006) Mosquitocidal activities of Malaysian plants. J Trop for Sci 18:74–80

    Google Scholar 

  • Zeng Y, Zhang Y, Weng Q, Hu M, Zhong G (2010) Cytotoxic and insecticidal activities of derivatives of harmine, a natural insecticidal component isolated from Peganum harmala. Molecules 15:7775–7791

    CAS  PubMed  Google Scholar 

  • Ziba C, Slutsker L, Chitsulo L, Steketee RW (1994) Use of malaria prevention measures in Malawian households. Trop Med Parasitol 45:70–73

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the department of plant science, University of Pretoria, South Africa, Department of Chemistry, Banaras Hindu University, India and National Research Foundation for support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrita Lall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishore, N., Mishra, B.B., Tiwari, V.K. et al. Natural products as leads to potential mosquitocides. Phytochem Rev 13, 587–627 (2014). https://doi.org/10.1007/s11101-013-9316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9316-2

Keywords

Navigation