Skip to main content
Log in

Mutant HRas Signaling and Rationale for Use of Farnesyltransferase Inhibitors in Head and Neck Squamous Cell Carcinoma

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinomas (HNSCCs) are often associated with poor outcomes, due at least in part to the limited number of treatment options available for those patients who develop recurrent and/or metastatic disease (R/M HNSCC). Even with the recent validation and approval of immunotherapies in the first-line setting for these patients, the need for the development of new and alternative precision medicine strategies with survival benefit is clear. Oncogenic alterations in the HRAS (Harvey rat sarcoma virus) proto-oncogene are seen in approximately 4–8% of R/M HNSCC tumors. Recently, several preclinical and clinical advancements have been made in the implementation of small-molecule inhibitors that block post-translational farnesylation of HRas, thereby abrogating its downstream oncogenic activity. In this review, we focus on the biology of wild-type and mutant HRas signaling in HNSCC, and rationale for use and outcomes of farnesyltransferase inhibitors in patients with HRAS-mutant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  2. Johnson DE, Burtness B, Leemans CR, Lui V, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11(8):781–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abrahao R, Perdomo S, Pinto L, et al. Predictors of survival after head and neck squamous cell carcinoma in South America: the InterCHANGE Study. JCO Glob Oncol. 2020;6:486–99.

    Article  PubMed  Google Scholar 

  5. Braakhuis BJM, Leemans CR, Visser O. Incidence and survival trends of head and neck squamous cell carcinoma in the Netherlands between 1989 and 2011. Oral Oncol. 2014;50(7):670–5.

    Article  PubMed  Google Scholar 

  6. Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–28.

    Article  CAS  PubMed  Google Scholar 

  7. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bauml J, Seiwert TY, Pfister DG, et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, Phase II study. J Clin Oncol. 2017;35(14):1542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1965;204:1104–5.

    Article  Google Scholar 

  10. Kirsten WH, Mayer LA. Malignant lymphomas of extrathymic origin induced in rats by murine erythroblastosis virus. J Natl Cancer Inst. 1969;43(3):735–46.

    CAS  PubMed  Google Scholar 

  11. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    CAS  PubMed  Google Scholar 

  12. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaffee EM, Hruban RH, Canto M, Kern SE. Focus on pancreatic cancer. Cancer Cell. 2002;2(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  14. Serebriiskii IG, Connelly C, Frampton G, et al. Comprehensive characterization of RAS mutations in colon and rectal cancers in old and young patients. Nat Commun. 2019;10(1):3722.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reck M, Carbone DP, Garassino M, Barlesi F. Targeting KRAS uin non-small-cell lung cancer: recent progress and new approaches. Ann Oncol. 2021;32(9):1101–10.

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Rostan G, Zhao H, Camp RL, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.

    Article  CAS  PubMed  Google Scholar 

  17. Seton-Rogers S. KRAS-G12C in the crosshairs. Nat Rev Cancer. 2020;20(1):3.

    Article  CAS  PubMed  Google Scholar 

  18. Rampias T, Giagini A, Siolos S, et al. RAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma. Clin Cancer Res. 2014;20(11):2933–46.

    Article  CAS  PubMed  Google Scholar 

  19. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  Google Scholar 

  20. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.

    Article  Google Scholar 

  22. Pugh TJ, Bell JL, Bruce JP, et al. AACR Project GENIE: 100,000 cases and beyond. Cancer Discov. 2022;12(9):2044–57.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coleman N, Marcelo KL, Hopkins JF, et al. HRAS mutations define a distinct subgroup in head and neck squamous cell carcinoma. JCO Precis Oncol. 2023;7: e2200211.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gillison ML, Akagi K, Xiao W, et al. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res. 2019;29(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seiwert TY, Zuo Z, Keck MK, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Hebshi NN, Li S, Nasher AT, et al. Exome sequencing of oral squamous cell carcinoma in users of Arabian snuff reveals novel candidates for driver genes. Int J Cancer. 2016;139(2):363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Su S, Lin C, Liu Y, et al. Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 2017;7(5):1088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saranath D, Chang SE, Bhoite LT, et al. High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer. 1991;63(4):573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gimple RC, Wang X. RAS: Striking at the core of the oncogenic circuitry. Front Oncol. 2019;9:965.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kalyankirshna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666–72.

    Article  Google Scholar 

  32. Buday L, Downward J. Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell. 1993;73(3):611–20.

    Article  CAS  PubMed  Google Scholar 

  33. Tonlaar N, Galoforo S, Thibodeau BJ, et al. Antitumor activity of the dual PI3K/MTOR inhibitor, PF-04691502, in combination with radiation in head and neck cancer. Radiother Oncol. 2017;124(3):504–12.

    Article  CAS  PubMed  Google Scholar 

  34. Blas K, Wilson TG, Tonlaar N, et al. Dual blockade of PI3K and MEK in combination with radiation in head and neck cancer. Clin Transl Radiat Oncol. 2018;11:1–10.

    PubMed  PubMed Central  Google Scholar 

  35. Pandey A, Lazar DF, Saltiel AR, Dixit VM. Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity. J Biol Chem. 1994;269(48):30154–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pratt RL, Kinch MS. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene. 2002;21(50):7690–9.

    Article  CAS  PubMed  Google Scholar 

  37. Macrae M, Neve RM, Rodriguez-Viciana P, et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 2005;8(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bhatia S, Nguyen D, Darragh LB, et al. EphB4 and ephrinB2 act in opposition in the head and neck tumor microenvironment. Nat Commun. 2022;13(1):3535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thaker PH, Deavers M, Celestino J, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res. 2004;10(15):5145–50.

    Article  CAS  PubMed  Google Scholar 

  40. Herrem CJ, Tatsumi T, Olson KS, et al. Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clin Cancer Res. 2005;11(1):226–31.

    Article  CAS  PubMed  Google Scholar 

  41. Brannan JM, Dong W, Prudkin L, et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res. 2009;15(13):4423–30.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Zhang X, Qiu Y, et al. Clinical significance of EphA2 expression in squamous-cell carcinoma of the head and neck. J Cancer Res Clin Oncol. 2011;137(5):761–9.

    Article  CAS  PubMed  Google Scholar 

  43. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10:842–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hofmann MH, Gmachl M, Ramharter J, et al. BI-3406, a potent and selective SOS1-KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov. 2021;11(1):142–57.

    Article  CAS  PubMed  Google Scholar 

  46. Evelyn CR, Duan X, Biesiada J, Seibel WL, Meller J, Zheng Y. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Chem Biol. 2014;21(12):1618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jin H, Wang X, Ying J, Tao Q. Epigenetic silencing of a Ca2+-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc Natl Acad Sci U S A. 2007;104(30):12353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith MJ, Neel BG, Ikura M. NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc Natl Acad Sci U S A. 2013;110(12):4574–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wittinghofer A. Signal transduction via Ras. Biol Chem. 1998;379(8–9):933–7.

    CAS  PubMed  Google Scholar 

  50. Hagemann C, Rapp UR. Isotype-specific functions of Raf kinases. Exp Cell Res. 1999;253(1):34–46.

    Article  CAS  PubMed  Google Scholar 

  51. Castellano E, Downward J. RAS interaction with PI3K: More than just another effector pathway. Genes Cancer. 2011;2(3):261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thevathasan JV, Tan E, Zheng H, et al. The small GTPase hRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts. Mol Biol Cell. 2013;24(14):2228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geyer FC, Li A, Papanastasiou AD, et al. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat Commun. 2018;9(1):1816.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lui VWY, Hedberg ML, Li H, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Janku F, Lee JJ, Tsimberidou AM, et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elkabets M, Pazarentzos E, Juric D, et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell. 2015;27(4):533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Misale S, Fatheree JP, Cortez E, et al. KRAS G12C NSCLC models are sensitive to direct targeting of KRAS in combination with PI3K inhibition. Clin Cancer Res. 2019;25(2):796–807.

    Article  CAS  PubMed  Google Scholar 

  59. Ferro E, Trabalzini L. RalGDS family members couple Ras to Ral signaling, and that’s not all. Cell Signal. 2010;22(12):1804–10.

    Article  CAS  PubMed  Google Scholar 

  60. Moghadem AR, Patrad E, Tafsiri E, et al. Ral signaling pathway in health and cancer. Cancer Med. 2017;6(12):2998–3013.

    Article  Google Scholar 

  61. González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell. 2005;7(3):219–26.

    Article  PubMed  Google Scholar 

  62. Jagadeeshan S, Prasad M, Badarni M, et al. Mutated HRAS activates YAP1-AXL signaling to drive metastasis of head and neck cancer. Cancer Res. 2023;83(7):1031–47.

    Article  CAS  PubMed  Google Scholar 

  63. Fu M, Hu Y, Lan T, Guan K, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther. 2022;7(1):376.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Javaid S, Schaefer A, Goodwin CM, et al. Concurrent inhibition of ERK and farnesyltransferase suppresses the growth of HRAS mutant head and neck squamous cell carcinoma. Mol Cancer Ther. 2022;21(5):762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gilardi M, Wang Z, Proietto M, et al. Tipifarnib as a precision therapy for HRAS-mutant head and neck squamous cell carcinomas. Mol Cancer Ther. 2020;19(9):1784–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tian X, Rusanescu G, Hou W, Schaffhausen B, Feig LA. PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-independent mechanism. EMBO J. 2002;21(6):1327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahearn I, Zhou M, Philips MR. Posttranslational modifications of RAS proteins. Cold Spring Har Perspect Med. 2018;8(11): a031484.

    Article  CAS  Google Scholar 

  68. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol. 2012;13:39–51.

    Article  CAS  Google Scholar 

  69. Zhang FL, Kirschmeier P, Carr D, et al. Characterization of Ha-ras, N-ras, Ki-Ras4A, and Ki-Ras4B as in vitro substrates for farnesyl protein transferase and geranylgeranyl protein transferase type I. J Biol Chem. 1997;272(15):10232–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lerner EC, Qian Y, Blaskovich MA, et al. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J Biol Chem. 1995;270(45):26802–6.

    Article  CAS  PubMed  Google Scholar 

  71. Liu M, Sjogren KM, Karlsson C, et al. Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci USA. 2010;107(14):6471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whyte DB, Kirschmeier P, Kochenberry TN, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem. 1997;272(22):14459–64.

    Article  CAS  PubMed  Google Scholar 

  73. Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduc Target Ther. 2021;6(1):386.

    Article  Google Scholar 

  74. Adjei AA, Mauer A, Bruzek L, et al. Phase II study of the farnesyl transferase inhibitor R115777 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21(9):1760–6.

    Article  CAS  PubMed  Google Scholar 

  75. Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003;13(15):1259–68.

    Article  CAS  PubMed  Google Scholar 

  76. Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem. 2003;278(35):32493–6.

    Article  CAS  PubMed  Google Scholar 

  77. Tabancay AP Jr, Gau C, Machado IMP, et al. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem. 2003;278(41):39921–30.

    Article  CAS  PubMed  Google Scholar 

  78. Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P. The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem. 2005;280(35):31101–8.

    Article  CAS  PubMed  Google Scholar 

  79. Mavrakis KJ, Zhu H, Silva RLA, et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev. 2008;22(16):2178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng H, Liu A, Liu B, Li M, Yu H, Luo X. Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett. 2010;297(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  81. Inoki K, Li Y, Zhu T, Wu J, Guan K. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol. 2002;4:648–57.

    Article  CAS  PubMed  Google Scholar 

  82. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658–65.

    Article  CAS  PubMed  Google Scholar 

  83. Ju JA, Gilkes DM. RhoB: team oncogene or team tumor suppressor. Genes (Basel). 2018;9(2):67.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Du W, Lebowitz PF, Prendergast GC. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol. 1999;19(3):1831–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Du W, Prendergast GC. Geranylgeranylated RhoB mediates suppression of human tumor cell growth by farnesyltransferase inhibitors. Cancer Res. 1999;59(21):5492–6.

    CAS  PubMed  Google Scholar 

  86. Kazerounian S, Gerald D, Huang M, et al. RhoB differentially controls Akt function in tumor cells and stromal endothelial cells during breast tumorigenesis. Cancer Res. 2013;73(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  87. Kohl NE, Omer CA, Conner MW, et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med. 1995;1(8):792–877.

    Article  CAS  PubMed  Google Scholar 

  88. Long SB, Hancock PJ, Kral AM, Hellinga HW, Beese LS. The crystal structure of human protein farnesyltransferase reveals the basis for inhibition by CaaX tetrapeptides and their mimetics. Proc Natl Acad Sci USA. 2001;98(23):12948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen X, Makarewicz JM, Knauf JA, Johnson LK, Fagin JA. Transformation by Hras(G12V) is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene. 2014;33(47):5442–9.

    Article  CAS  PubMed  Google Scholar 

  90. Chun K, Lee H, Hassan K, Khuri F, Hong WK, Lotan R. Implication of protein kinase B/Akt and Bcl-2/Bcl-XL suppression by the farnesyl transferase inhibitor SCH66336 in apoptosis induction in squamous carcinoma cells. Cancer Res. 2003;63(16):4796–800.

    CAS  PubMed  Google Scholar 

  91. Oh S, Kim W, Kim J, et al. Identification of insulin-like growth factor binding protein-3 as a farnesyl transferase inhibitor SCH66336-induced negative regulator of angiogenesis in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(2):653–61.

    Article  CAS  PubMed  Google Scholar 

  92. Zujewski J, Horak ID, Bol CJ, et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol. 2000;18(4):927–41.

    Article  CAS  PubMed  Google Scholar 

  93. Appels N, Beijnen JH, Schellens J. Development of farnesyl transferase inhibitors: a review. Oncologist. 2005;10(8):565–78.

    Article  PubMed  Google Scholar 

  94. Saba NF, Shu L, Wang D, Nannapaneni S, Shin DM, Chen G. Effect of the combined treatment with tipifarnib and cetuximab on EGFR and RAS related signaling pathways in H-RAS wild type squamous cell carcinoma of the head and neck (HNSCC). Int J Radiat Oncol Biol Phys. 2020;106(5):1187.

    Article  Google Scholar 

  95. Shu L, Wang D, Nannapaneni S, et al. Tipifarnib enhances anti-EGFR activity of cetuximab in non-hRas mutated head and neck squamous cell carcinoma cancer (HNSCC). Oral Oncol. 2021;122: 105546.

    Article  CAS  PubMed  Google Scholar 

  96. Hanrahan EO, Kies MS, Glisson BS, et al. A phase II study of Lonafarnib (SCH66336) in patients with chemorefractory, advanced squamous cell carcinoma of the head and neck. Am J Clin Oncol. 2009;32(3):274–9.

    Article  CAS  PubMed  Google Scholar 

  97. Aykan NF, Ozatli T. Objective response rate assessment in oncology: current situation and future expectations. World J Clin Oncol. 2020;11(2):53–73.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ho AL, Brana I, Haddad R, et al. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutation. J Clin Oncol. 2021;39(17):1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campbell JD, Yau C, Bowlby R, et al. Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Rep. 2018;23(1):194–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smith AE, Chan S, Wang Z, et al. Tipifarnib potentiates the antitumor effects of PI3Kα inhibition in PIK3CA- and HRAS-dysregulated HNSCC via convergent inhibition of mTOR activity. Cancer Res. 2023. https://doi.org/10.1158/0008-5472.CAN-23-0282. (Epub 20 Jun 2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Holla VR, Elamin YY, Bailey AM, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017;3(1): a001115.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chad Brenner.

Ethics declarations

Funding

This manuscript benefited from institutional support of the authors by the University of Michigan and the Rogel Cancer Center support grant P30CA046592. JDS received funding support from a National Institutes of Health Training Grant (NIH/NIDCD T32 DC005356) and from an AHNS Presidential Award of the CORE Grants Program of the American Academy of Otolaryngology. JCB was supported by NIH/NIDCR U01-DE029255.

Conflicts of interest/competing interests

Jiayu Wang, Dana Al-Majid, J. Chad Brenner, Joshua D. Smith declare they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No datasets were generated or analyzed during the current study.

Code availability

No datasets were generated or analyzed during the current study.

Authors’ contributions

In accordance with journal policies, JW, DA-M, JCB, and JDS attest that they have (1) made substantial contributions to the conception or design of the work and the acquisition, analysis, or interpretation of data; (2) drafted the work and revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Al-Majid, D., Brenner, J.C. et al. Mutant HRas Signaling and Rationale for Use of Farnesyltransferase Inhibitors in Head and Neck Squamous Cell Carcinoma. Targ Oncol 18, 643–655 (2023). https://doi.org/10.1007/s11523-023-00993-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-023-00993-3

Navigation