Skip to main content
Log in

Tackling pollination of tubular flowers in Rutaceae and a case study of Conchocarpus rubrus (Galipeinae, Rutaceae)

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Tubular flowers are only found in two distantly related groups in Rutaceae: the mainly Australian tribe Boronieae and the Neotropical subtribe Galipeinae. It is assumed that these nectar-rewarded, tubular flowers arose from convergent evolution driven by pollinator pressures. However, there are few empirical studies on pollen vectors of Neotropical Rutaceae. We explored the floral biology and pollination of Conchocarpus rubrus (A.St.-Hil.) Bruniera and Groppo (Galipeinae), including details about its nectar-secreting floral structures. We also compared the available records on floral biology and pollination of Boronieae and Galipeinae, aiming to provide a better understanding of the factors that influenced their floral evolution. Conchocarpus rubrus was pollinated by a single species of hermit hummingbird (Phaethornis idaliae Bourcier and Mulsant 1856) and by butterflies (Pyrginae and Pierinae), which take nectar accumulated at the bottom of the tube. Floral features and pollination data indicate that the convergent evolution of floral tubes in Rutaceae resulted from phenotypic specialization toward a subset of nectar-foraging pollinators with long mouth parts. Specifically, while in the Australian Boronieae the evolutive pathway toward sympetaly was likely influenced by Meliphagidae birds, in the Galipeinae, it was influenced by hummingbirds, butterflies, and settling moths. Besides a floral tube, floral features also linked to phenotypic specialization toward Meliphagidae pollination in Boronieae were related not only to birds’ attraction (nectar features, attractive colors, etc.), but also to insect impediments (sensory exclusion, absence of landing platforms, etc.), occurring together with other ornithophilous features. In Galipeinae, floral features are more diverse, and functionally linked to the different groups of pollinators herein found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–7
Fig. 8–13

Similar content being viewed by others

References

  • Ambruster WS (2006) Evolutionary and ecological aspects of specialized pollination: views from the Arctic to the tropics. In: Waser M, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 260–282

    Google Scholar 

  • Araujo LD, Quirino ZG, Machado IC (2011) Fenologia reprodutiva, biologia floral e polinização de Allamanda blanchetii, uma Apocynaceae endêmica da Caatinga. Rev Bras Bot 34:211–222

    Article  Google Scholar 

  • Araújo LDA, Quirino ZGM, Machado IC (2014) High specialisation in the pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators. Plant Biol 16:947–955

    Article  PubMed  Google Scholar 

  • Armstrong JA (1979) Biotic pollination mechanism in the Australian flora—a review. New Zeal J Bot 17:467–508

    Article  Google Scholar 

  • Barbosa AAA (1999) Hortia brasiliana Vand (Rutaceae): polinização por aves Passeriformes no cerrado do sudeste brasileiro. Rev Bras Bot 22:99–105

    Article  Google Scholar 

  • Bawa KS, Perry DR, Beach JH (1985) Reproductive biology of tropical lowland rain forest trees. II- Pollination systems. Am J Bot 72:346–356

    Article  Google Scholar 

  • Bernadello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer, Dordrecht, pp 215–249

    Google Scholar 

  • Bertin RI, Newman CM (1993) Dichogamy in angiosperms. Bot Rev 59:112–152

    Article  Google Scholar 

  • Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762–765

    Article  CAS  Google Scholar 

  • Bruniera CP, Kallunki JA, Groppo M (2015) Almeidea A. St.-Hil. belongs to Conchocarpus J.C. Mikan (Galipeinae, Rutaceae): evidence from morphological and molecular data, with a first analysis of subtribe Galipeinae. PLoS One. doi:10.1371/journal.pone.0125650

    PubMed  Google Scholar 

  • Bukatsch F (1972) Bemerkungen zur Doppelfärbung Astrablau-Safranin. Mikrokosmos 61:255

    Google Scholar 

  • Crestana CSM, Dias IS, Kageyama PY (1982) Biologia floral do Guarantã (Esenbekia leiocarpa Engl.). Silvicultura 8:35–38

    Google Scholar 

  • Cronk QCB, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:15–27

    Article  Google Scholar 

  • Cruden RW, Hermann-Parker SM (1979) Butterfly pollination of Caesalpinia pulcherrima, with observations on a psychophilous syndrome. J Ecol 67:155–168

    Article  Google Scholar 

  • El Ottra JHL, Pirani JR, Endress PK (2013) Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): structural features and evolutionary implications. Ann Bot 111:821–837

    Article  PubMed  PubMed Central  Google Scholar 

  • El Ottra JHL, Pirani JR, Pansarin ER (2015) Floral biology and pollination of two sympatric species of Galipeinae (Galipeeae, Rutaceae) endemic to the Brazilian Atlantic Forest. Flora. doi:10.1016/j.flora.2015.12.006

    Google Scholar 

  • Elias TS (1983) Extrafloral nectaries: their structure and functions. In: Elias TS, Bentley B (eds) The Biology of Nectaries. Columbia University Press, New York, pp 174–203

    Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK, Matthews ML (2012) Progress and problems in the assessment of flower morphology in higher-level systematics. Plant Sys Evol 298:257–276

    Article  Google Scholar 

  • Engler A (1931) Rutaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol. 19a, 2nd edn. Engelmann, Leipzig, pp 187–359

  • Faegri L, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, New York

    Google Scholar 

  • Fahn A (1952) On the structure of floral nectaries. Bot Gaz 113:464–470

    Article  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fahn A (1987) The extrafloral nectaries of Sambucus nigra. Ann Bot 60:299–308

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fleming TH, Geiselman C, Kress WJ (2009) The evolution of bat pollination: a phylogenetic perspective. Ann Bot 104:1017–1043

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford AH, Paton DC, Forde N (1979) Birds as pollinators of Australian plants. New Zeal J Bot 17:509–519

    Article  Google Scholar 

  • Galleto L, Bernadello G (2005) Rewards in Flower – Nectar. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Ontario, Cambridge, pp 261–313

    Google Scholar 

  • Grant KA (1966) A hypothesis concerning the prevalence of red coloration in California hummingbird flowers. Am Nat 100:85–97

    Article  Google Scholar 

  • Grantsau R (1988) Os Beija-flores do Brasil. Expressão e Cultura, Rio de Janeiro

    Google Scholar 

  • Groppo M, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA (2008) Phylogeny of Rutaceae based on two noncoding regions from cpDNA. Am J Bot 95:985–1005

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Mckey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Article  Google Scholar 

  • INCAPER - Instituto Capixaba de Pesquisa Assistência Técnica e Extensão Rural (2012) Sistemas de informação metereológica. Portal do governo do estado do Espírito Santo. http://hidrometeorologia.incaper.es.gov.br. Acessed 14 July 2012

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, New York

    Google Scholar 

  • Kallunki JA, Pirani JR (1998) Synopses of Angostura Roem. & Schult. and Conchocarpus J. C. Mikan. Kew Bull 53:257–334

    Article  Google Scholar 

  • Kearns C, Inouye W (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Köppen W (1948) Climatologia: com um estúdio de los climas de la tierra. Fondo de Cultura Econômica, México

    Google Scholar 

  • Kubitzki K, Kallunki JA, Duretto M, Wilson PG (2011) Rutaceae. In: Kubitzki K (ed) The Families and Genera of Vascular Plants, vol 10. Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. Springer, Hamburg, pp 276–356

  • Lloyd DG, Webb CJ (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. New Zeal J Bot 24:135–162

    Article  Google Scholar 

  • Lopes A (2002) Polinização por beija-flores em remanescentes da Mata Atlântica Pernambucana, nordeste do Brasil, MSc Thesis. Universidade Estadual de Campinas, São Paulo

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Article  Google Scholar 

  • Lunau K, Papiorek S, Eltz T, Sazima M (2011) Avoidance of achromatic colours by bees provides a private niche for hummingbirds. J Exp Biol 214:1607–1612

    Article  PubMed  Google Scholar 

  • Machado ICS, Sazima M (1987) Estudo comparativo da biologia floral em duas espécies invasoras: Ipomoea hederifolia e I. quamoclit (Convolvulaceae). Rev Brasil Biol 47:425–436

    Google Scholar 

  • Martén-Rodríguez S, Almarales-Castro A, Fenster CB (2009) Evaluation of pollination syndromes in Antillean Gesneriaceae: evidence for bat, hummingbird and generalized flowers. J Ecol 97:348–359

    Article  Google Scholar 

  • Mole BJ, Udovicit F, Ladiges PY, Duretto MF (2004) Molecular phylogeny of Phebalium (Rutaceae: Boronieae) and related genera based on the nrDNA regions ITS 1 + 2. Plant Syst Evol 249:197–212

    Article  CAS  Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest1. Biotropica 32:786–792

    Article  Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 53:717–728

    Article  Google Scholar 

  • Opler PA (1981) Nectar production in a tropical ecosystem. In: Elias TS, Bentley B (eds) The Biology of Nectaries. Columbia University Press, New York, pp 30–79

    Google Scholar 

  • Paton DC (1993) Honeybees in the Australian Environment: does Apis mellifera disrupt or benefit the native biota ? Bioscience 43:95–103

    Article  Google Scholar 

  • Paton DC, Ford HA (1976) Pollination by birds of native plants in south Australia. Emu 77:73–85

    Article  Google Scholar 

  • Piedade LH, Ranga NT (1993) Ecologia da polinização de Galipea jasminiflora Engler (Rutaceae). Revista Brasil Bot 16:151–157

    Google Scholar 

  • Pombal ECP, Morellato PC (2000) Differentiation of floral color and odor in two fly pollinated species of Metrodorea (Rutaceae) from Brazil. Plant Syst Evol 221:141–156

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins Publishers, London

    Google Scholar 

  • Ramp E (1988) Struktur, Funktion und systematische Bedeutung des Gynoeciums bei den Rutaceae und Simaroubaceae, Ph.D. thesis. University of Zurich, Zurich

  • Raven PH (1972) Why are bird-visited flowers predominantly red? Evolution 26:674

    Article  Google Scholar 

  • Renner S (2006) Rewardless flowers in angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant-pollination interactions: from specialization to generalization. University Press of Chicago, Chicago, pp 123–138

    Google Scholar 

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ruschi A (1982) Hummingbirds of state of Espírito Santo. Editora Rios, São Paulo

    Google Scholar 

  • Ruschi A (1989) Aves do Brasil, beija-flores, vol IV. Editora Expressão e Cultura, Rio de Janeiro

    Google Scholar 

  • Sazima M, Buzato S, Sazima I (1999) Bat-pollinated flower assemblages and bat visitors at two Atlantic forest sites in Brazil. Ann Bot 83:705–712

    Article  Google Scholar 

  • Silva IM (1988) Revisão taxonômica do gênero Almeidea Saint-Hilaire (Rutaceae), M.Sc. thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro

  • Silva CSP, Santos ML (2008) Comportamento fenológico no evento pós-queima e biologia reprodutiva de Spiranthera odoratissima A. St.-Hil. (Rutaceae). Biotemas 21:29–39

    Google Scholar 

  • Singhal VK, Salwan A, Kumar P, Kaur J (2011) Phenology, pollination and breeding system of Aegle marmelos (Linn.) correa (Rutaceae) from India. New Forest 42:85–100

    Article  Google Scholar 

  • Skorupa LA (1996) Revisão taxonômica de Pilocarpus Vahl (Rutaceae), Ph.D. thesis. Universidade de São Paulo, São Paulo

  • Snow DW, Snow BK (1980) Relationships between hummingbirds and flowers in Andes of Colombia. Bull Brit Mus (Nat Hist) Zool Ser 38:105–139

    Google Scholar 

  • Souza LA, Mourão KSM, Moscheta IS (2003) Morfologia e anatomia da flor de Pilocarpus pennatifolius Lem. (Rutaceae). Rev Bras Bot 26:175–184

    Article  Google Scholar 

  • Souza A, Mourão KSM, Souza LA (2005) Morfologia e anatomia do fruto e da semente em desenvolvimento de Pilocarpus pennatifolius Lem. (Rutaceae). Rev Bras Bot 28:745–754

    Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in Angiosperms: pollination mechanisms. Ann Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Stiles FG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Miss Bot Gard 68:323–351

    Article  Google Scholar 

  • Varassin IG, Trigo JR, Sazima M (2001) The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil. Bot J Linn Soc 136:139–152

    Article  Google Scholar 

  • Vogel S (1954) Blütenbiologische Typen als Elemente der Sippengliederung, dargestellt anhand der Flora Südafrikas. Bot Stud 1:1–338

    Google Scholar 

  • Waddington KD (1976) Pollination of Apocynum sibicum (Apocynaceae) by Lepidoptera. Southw Nat 21:31–36

    Article  Google Scholar 

  • Waser NM, Chittka L, PriceMV Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060

    Article  Google Scholar 

  • Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in Angiosperms II. Herkogamy. New Zeal J Bot 24:163–178

    Article  Google Scholar 

  • Wilson PG (1961) A taxonomic revision of the genus Correa (Rutaceae). T Roy Soc South Aust 85:21–53

    Google Scholar 

  • Wilson PG (2013a) Correa. In: Wilson A (ed) Flora of Australia, vol 26., RutaceaeCSIRO publishing, Melbourne, pp 337–361

    Google Scholar 

  • Wilson PG (2013b) Leionema. In: Wilson A (ed) Flora of Australia, vol 26., RutaceaeCSIRO publishing, Melbourne, pp 431–446

    Google Scholar 

  • Wilson PG (2013c) Nematolepis. In: Wilson A (ed) Flora of Australia, vol 26., RutaceaeCSIRO publishing, Melbourne, pp 447–452

    Google Scholar 

  • Wilson PG (2013d) Rhadinothamnus. In: Wilson A (ed) Flora of Australia, vol 26., RutaceaeCSIRO publishing, Melbourne, pp 452–454

    Google Scholar 

  • Zimmermann JG (1932) Über die extrafloralen nektarien der Angiospermen. Beihefte zum Botanischen Centralblatt 49:99–196

    Google Scholar 

Download references

Acknowledgments

The authors thank the technicians of the Plant Anatomy Laboratory (IB-USP), including Gisele R. Oliveira Costa, Tássia Cristina dos Santos, and Irwandro Roberto Pires, for their assistance to the first author; as well as Ludmila M. Pansarin (FFCLRP, São Paulo) for assistance during fieldwork. The first author also thanks Pietro K. Maruyama and Felipe W. Amorin for their helpful suggestions on nocturnal pollination records; David Martin for their linguistics suggestions; Diego Demarco, Maria do Carmo Amaral, Elza Guimarães, Anselmo Nogueira, and Leandro Freitas for their suggestions on a previous version of this manuscript. We also thank Instituto Federal do Espírito Santo for allowing us to work in their forest area. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo [Grant Numbers 09/54569-9 and 09/08764-4 awarded to J. H. L. El Ottra and J. R. Pirani], and Conselho Nacional de Desenvolvimento e Pesquisa for the productivity grant awarded to J. R. Pirani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Hanna Leite El Ottra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

(Electronic Supplementary Material): Flowers of Conchocarpus rubrus. (A) First-day flower, longitudinally opened, with anthers (white arrow) recessed in relation to the stigma (red arrow); (B) Photomicrograph of a longisection at the upper part of the disc (arrow indicates phloematic bundels). (C) SEM micrograph at the region of the aperture of the extrafloral nectary (arrow). Scale bars (A) = 4 mm; (B) = 50 µm; (C) 100 µm.(EPS 14924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ottra, J.H.L., Pirani, J.R. & Pansarin, E.R. Tackling pollination of tubular flowers in Rutaceae and a case study of Conchocarpus rubrus (Galipeinae, Rutaceae). Braz. J. Bot 39, 913–924 (2016). https://doi.org/10.1007/s40415-016-0285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0285-8

Keywords

Navigation