Skip to main content
Log in

Embryological studies in Thinouia mucronata and Serjania meridionalis (Paullinieae, Sapindaceae): development of gametophytes in both floral morphs and its phylogenetic implications

  • Structural Botany - Review
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The tribe Paullinieae is distinguished by a monoecious reproductive system; it exhibits two floral morphs, namely staminate flowers, with gynoecium reduced to a pistillode, and morphologically hermaphrodite but functionally pistillate flowers. The aim of this study was to analyze the development of sporogenesis and gametogenesis in flowers of Thinouia mucronata Radlk. (subtribe Thinouiinae) and Serjania meridionalis Cambess. (subtribe Paulliniinae) and to elucidate the moment when pollen grains of pistillate flowers and the ovule of staminate ones stopped their development. Light and scanning electron microscopy was applied using standard techniques. In T. mucronata flowers are actinomorphic; the pistillate ones have anatropous, pseudocrassinucellate ovules, without hypostase and with placental obturator, and stamens with indehiscent anthers and well-developed pollen grains that remain inside the pollen sac at the end of anthesis. Serjania meridionalis has zygomorphic flowers, the pistillate ones have campylotropous, crassinucellate ovules, with presence of hypostase, and funicular obturator, and stamens with indehiscent anthers collapsed at the end of anthesis, showing remnants of aborted sporogenous tissue in each pollen sac. Both species share the anatomy of the anther wall; microsporocytes form tetrahedral or decussate tetrads; monads are bicellular; the pistillode has abortive megaspore; gynoecium with bithegmic ovules and Polygonum-type megagametophyte. One difference in antheral wall ontogeny between species was that T. mucronata displayed the dicotyledoneus type development, whereas S. meridionalis exhibited the basic type. These embryological characters clearly support the basal position of Thinouia in the tribe recently validated from molecular phylogeny studies and supported by the present morphological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo-Rodríguez P (2003) Melicocceae (Sapindaceae): Melicoccus and Talisia. In: Flora Neotropica Monograph 87:1–179. (New York Botanical Garden: New York, NY, USA)

  • Acevedo-Rodríguez P, Van Welzen PC, Adema F, Van Der Ham RWJM (2011) Sapindaceae. In: Kubitzki K (ed) Flowering Plants, Eudicots: Sapindales, Cucurbitales, Myrtaceae. The Families and Genera of Vascular Plants. Springer, Berlin, pp 357–407

    Google Scholar 

  • Acevedo-Rodríguez P, Wurdack KJ, Ferrucci MS, Johnson G, Pedro Dias P, Coelho RLG, Somner GV, Steinmann VW, Zimmer EA, Strong MT (2017) Generic relationships and classification of tribe Paullinieae (Sapindaceae) with a new concept of supertribe Paulliniodae. Syst Bot 42:96–114. https://doi.org/10.1600/036364417X694926

    Article  Google Scholar 

  • Avalos A, Zini M, Ferrucci MS, Lattar E (2019) Anther and gynoecium structure and development of male and female gametophytes of Koelreuteria elegans subsp. formosana (Sapindaceae). Flora 255:98–109. https://doi.org/10.1016/j.flora.2019.04.003

    Article  Google Scholar 

  • Bachelier JB, Endress PK (2009) Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. Bot J Linn Soc 159:499–571. https://doi.org/10.1111/j.1095-8339.2009.00959.x

    Article  Google Scholar 

  • Bawa KS (1977) The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae). Evol 31:52–63. https://doi.org/10.1111/j.1558-5646.1977.tb00981.x

    Article  CAS  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Compt Rendus Acad Sci III Sci Vie 324:543–550. https://doi.org/10.1016/S0764-4469(01)01324-5

    Article  CAS  Google Scholar 

  • Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, Sanmartín I, Küpfer P, Alvarez N (2009) Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol Phylogenet Evol 51:238–258. https://doi.org/10.1016/j.ympev.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  • Cao LM, Xia NH, Deng YF (2008) Embryology of Handeliodendron bodinieri (Sapindaceae) and its systematic value: development of male and female gametophytes. Plant Syst Evol 274:17–23. https://doi.org/10.1007/s00606-008-0024-0

    Article  Google Scholar 

  • Cao LM, Xia NH (2009) Floral organogenesis of Delavaya toxocarpa (Sapindaceae; Sapindales). J Syst Evol 47:237–244. https://doi.org/10.1111/j.1759-6831.2009.00023.x

    Article  Google Scholar 

  • Cole TCH, Ferrucci MS (2020) Sapindaceae Phylogeny Poster. https://doi.org/10.13140/RG.2.2.11526.29767

  • Corner EJH (1976) The seeds of dicotyledons. Cambridge University Press, Cambridge

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • de Lima HA, Somner GV, Giulietti AM (2016) Duodichogamy and sex lability in Sapindaceae: the case of Paullinia weinmanniifolia. Plant Syst Evol 302:109–120. https://doi.org/10.1007/s00606-015-1247-5

    Article  Google Scholar 

  • Ferrucci MS (1991) Sapindaceae. In: Spichiger RS, Ramella L (eds) Flora del Paraguay 1–144

  • Ferrucci MS (2005) Sapindaceae. In: Castro Souza V, Lorenzi H (eds) Botậnica Sistemática. Nova Odessa: Instituto Plantarum de Estudos da Flora Ltda 437–441

  • Ferrucci MS, Anzótegui LM (1993) El polen de Paullinieae (Sapindaceae). Bonplandia 6:211–243

    Article  Google Scholar 

  • Gonzalez AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres Lhotzkyana (Sterculiaceae). Bonplandia 9:287–294

    Article  Google Scholar 

  • González VV, Solís SM, Ferrucci MS (2014) Anatomía reproductiva en flores estaminadas y pistiladas de Allophylus edulis (Sapindaceae). Bol Soc Argent Bot 49:207–216

    Article  Google Scholar 

  • González VV, Solís SM, Ferrucci MS (2017) Embryological studies of Magonia pubescens (Dodonaeaeae, Sapindaceae): development of male and female gametophytes in both floral morphs and its phylogenetic implications. Aust Syst Bot 30:279–289. https://doi.org/10.1071/SB17021

    Article  Google Scholar 

  • Gulati N, Mathur S (1977) Embryology and taxonomy of Filicium decipiens. Phytomorphol 27:261–266

    Google Scholar 

  • Ha CO, Sands VE, Soepadmo E, Jong K (1988) Reproductive patterns of selected understorey trees in the Malaysian rain forest: the sexual species. Bot J Linn Soc 97:295–316

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  • Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of Angiosperms. Springer-Verlag, New York

    Book  Google Scholar 

  • Kadry A (1946) Embriology of Cardiospermum halicacabum L. Svensk Bot Tidskr 40:111–126

    Google Scholar 

  • Karkare-Khushalani I, Mulay BN (1964) Studies in Sapindaceae. I Embryology of Dodonaea Viscosa Phyton (Horn) 11:83–92

    Google Scholar 

  • Luque R, Sousa HC, Kraus JE (1996) Métodos de coloração de Roeser (1972) - modificado - E. Kropp (1972) visando a substituição do azul de astra por azul de alcião 8GS ou 8GX. Acta Bot Bras 10:199–212

    Article  Google Scholar 

  • Mathur S, Gulati N (1980) Embryology and taxonomy of Allophylus alnifolius Radlk. ex Engl. (Sapindaceae). Indian J Bot 3:103–112

    Google Scholar 

  • Mathur S, Gulati N (1981) Embryology of Lepidopetalum jackianum Hiern. Indian J Bot 4:216–221

    Google Scholar 

  • Mathur S, Gulati N (1989) Embryological studies in Allophylus zeylanicus L. Indian J Bot 12:62–65

    Google Scholar 

  • Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325. https://doi.org/10.1016/0169-5347(91)90039-Z

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CH, Diggle PK (2005) The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. Am J Bot 92:1068–1076. https://doi.org/10.3732/ajb.92.7.1068

    Article  PubMed  Google Scholar 

  • Nair NC, Joseph J (1960) Morphology and embryology of Cardiospermum halicacabum. J Indian Bot Soc 39:176–194

    Google Scholar 

  • O’Brien TP, Cully ME (1981) The Study of Plant Structure. Principles and Selected Methods. Termarcarphi Pty., Melbourne

  • Payer JB (1857) Traité d’organogénie comparée de la fleur. Masson, Paris

    Google Scholar 

  • Radlkofer L (1931–1934) Sapindaceae. In: Das Pflanzenreich (ed Engler, A). 98: pp 1539. (Wilhelm Engelmann: Leipzig, Germany)

  • Ronse Decraene LP, Smets E, Clinckemaillie D (2000) Floral ontogeny and anatomy in Koelreuteria with special emphasis on monosymmetry and septal cavities. Plant Syst Evol 223:91–107. https://doi.org/10.1007/BF00985329

    Article  Google Scholar 

  • Shamrov H (1998) Ovule classification in flowering plants-New approaches and concepts. Bot Jahrb Syst 120:377–407

    Google Scholar 

  • Solís SM, Galati BG, Ferrucci MS (2010) Microsporogenesis and microgametogenesis of Cardiospermum grandiflorum and Urvillea chacoensis (Sapindaceae, Paullinieae). Aust J Bot 58:597–604. https://doi.org/10.1071/BT10162

    Article  Google Scholar 

  • Solís SM (2011) Estudios morfo-anatómicos y ontogenéticos en flores de Paullinieae (Sapindaceae) y su significado evolutivo. PhD thesis. Universidad Nacional de Córdoba, Argentina

  • Solís SM, Zini LM, González VV, Ferrucci MS (2017) Floral nectaries in Sapindaceae s.s.: morphological and structural diversity, and their systematic implications. Protoplasma 254:2169–2188. https://doi.org/10.1007/s00709-017-1108-x

    Article  PubMed  Google Scholar 

  • Vary LB, Sakai AK, Weller SG (2011) Morphological and functional sex expression in the Malagasy endemic Tina striata (Sapindaceae). Am J Bot 98:1040–1048. https://doi.org/10.3732/ajb.1000479

    Article  PubMed  Google Scholar 

  • Weckerle CS, Rutishauser R (2005) Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae). Bot J Linn Soc 147:159–189. https://doi.org/10.1111/j.1095-8339.2005.00365.x

    Article  Google Scholar 

  • Yadav N, Pandey AK, Bhatnagar AK (2016) Cryptic monoecy and floral morph types in Acer oblongum (Sapindaceae): An endangered taxon. Flora 224:183–190. https://doi.org/10.1016/j.flora.2016.07.018

    Article  Google Scholar 

  • Yadav N, Pandey AK, Bhatnagar AK (2017) Comparative anther and pistil anatomy of three flowering morphs of andromonoecious Acer oblongum Wall. ex DC. (Sapindaceae s.l.) and its adaptive significance. Nord J Bot 36:1572. https://doi.org/10.1111/njb.01572

    Article  Google Scholar 

  • Ye XL, Wang FX, Qian NF (1992) Embryological studies of Litchi chinensis. Acta Bot Yunnan 14:59–65

    Google Scholar 

  • Zini LM, Galati BG, Solís SM, Ferrucci MS (2012) Anther structure and pollen development in Melicoccus lepidopetalus (Sapindaceae): An evolutionary approach to dioecy in the family. Flora 207:712–720. https://doi.org/10.1016/j.flora.2012.07.003

    Article  Google Scholar 

  • Zhou QY, Liu GS (2012) The embryology of Xanthoceras and its phylogenetic implications. Plant Syst Evol 298:457–468. https://doi.org/10.1007/s00606-011-0558-4

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by General Secretariat of Science and Technology, National University of the Northeast (PI N° 16 F022 and 20F013 ), the National Council of Scientific and Technological Research (PIP 11220170100429C), Argentina, and by a grant of the Myndel Botanica Foundation, for which we are profoundly grateful.

Author information

Authors and Affiliations

Authors

Contributions

SMS performed experiments work, analyzed data and prepared the figures. SMS and MSF wrote the article. MSF edited the final version of the manuscript. Both authors have approved the final manuscript.

Corresponding authors

Correspondence to Stella M. Solís or María S. Ferrucci.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís, S.M., Ferrucci, M.S. Embryological studies in Thinouia mucronata and Serjania meridionalis (Paullinieae, Sapindaceae): development of gametophytes in both floral morphs and its phylogenetic implications. Braz. J. Bot 45, 399–413 (2022). https://doi.org/10.1007/s40415-021-00730-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00730-y

Keywords

Navigation