Skip to main content
Log in

Effects of fire on mortality and resprouting patterns of Stryphnodendron adstringens (Fabaceae)

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

In the last 20 years, fire frequency in South America's largest savanna, the Cerrado, has increased by 41%. Although resprouting represents the main post-fire regeneration mechanism that allows plant species to persist in the Cerrado, under the new scenario of high fire incidence, small individual trees may not be able to regrow, while large individual trees may be subject to meristematic apical death or “topkill”. In this study, we evaluated the resistance and resilience of a tree species with a wide geographic distribution in the Cerrado, Stryphnodendron adstringens (Fabaceae) to non-prescribed fire and its resprouting dynamics. Seventy out of the 72 individuals of S. adstringens studied suffered topkill, indicating a low resistance to fire. To monitor the development and dynamics of resprouts for 17 months, we randomly selected 54 individual trees. Altogether, 143 resprouts were recorded in these 54 individuals during 3, 6, 10, and 17 months after fire, being 90% in the first 3 months. Larger individual trees had a larger number of resprouts and of larger sizes. Resprout mortality (14%) was higher in the 17th month post-fire. Multiple logistic regressions revealed that the survival probability of resprouts to the 17th month increased with their size but decreased with their number. We conclude that S. adstringens has low resistance but high resilience to, at least, a single fire. Also, there is a trade-off between the production of resprouts and their chance of survival. Thus, frequent fires can reduce the recruitment and persistence of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Allen SE (1964) Chemical aspects of heather burning. J Appl Ecol 1:347–367

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Auler AS (2020) History of Research in the Lagoa Santa Karst. In: Auler AS, Pessoa P (eds) Lagoa Santa Karst: Brazil’s Iconic Karst Region. Cave and Karst systems of the World. Springer, Cham, pp 1–11

    Chapter  Google Scholar 

  • Auler AS, Piló LB (2015) Lagoa Santa karst: cradle of Brazilian cave studies. In: Vieira B, Salgado A, Santos L (eds) Landscapes and landforms of Brazil. World Geomorphological Landscapes. Springer, Dordrecht, pp 183–190

    Chapter  Google Scholar 

  • Bennett LT, Bruce MJ, MacHunter J et al (2016) Mortality and recruitment of fire-tolerant eucalyptus as influenced by wildfire severity and recent prescribed fire. For Ecol Manag 380:107–117

    Article  Google Scholar 

  • Berlinck CN, Batista EKL (2020) Good fire, bad fire: It depends on who burns. Flora 268:1–4

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394

    Article  PubMed  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  CAS  PubMed  Google Scholar 

  • Bowman DM, Balch J, Artaxo P et al (2011) The human dimension of fire regimes on Earth. J Biogeogr 38:2223–2236

    Article  PubMed  PubMed Central  Google Scholar 

  • Brina AE (2020) The Vegetation of Lagoa Santa Karst. In: Auler S, Pessoa P (eds) Lagoa Santa Karst: Brazil’s Iconic Karst Region. Cave and Karst systems of the World. Springer, Cham, pp 27–49

    Chapter  Google Scholar 

  • Canadell J, López-Soria L (1998) Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Funct Ecol 12:31–38

    Article  Google Scholar 

  • Carbone LM, Aguirre-Acosta N, Tavella J, Aguilar R (2017) Cambios florísticos inducidos por la frecuencia de fuego en el Chaco Serrano. Bol Soc Argentina Bot 52:753–778

    Article  Google Scholar 

  • Castagnino GLB, Marco Júnior PD (2011) Fornecimento de substituto de pólen na redução da mortalidade de Apis mellifera L. causada pela cria ensacada brasileira. Cienc Rural 41:1838–1843

    Article  Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ et al (2013) sprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35

    Article  CAS  PubMed  Google Scholar 

  • Climate-data (2021) Climate data. https://pt.climate-data.org/america-do-sul/brasil/minas-gerais/lagoa-santa-24953/. Accessed on 26 Dec 2021

  • Cochrane MA, Bowman DM (2021) Manage fire regimes, not fires. Nat Geosci 14:1–3

    Article  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics. John Wiley & Sons, New York

    Google Scholar 

  • Corrêa VS, Cerdeira AL, Fachin AL et al (2012) Geographical variation and quality assessment of Stryphnodendron adstringens (Mart.) Coville within Brazil. Genet Resour Crop Evol 59:1349–1356

    Article  Google Scholar 

  • Coutinho LM (1982) Ecological effects of fire in Brazilian Cerrado. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas, vol 42. Springer, Berlin, pp 273–291

    Chapter  Google Scholar 

  • Coutinho LM (1990) Fire in the ecology of the Brazilian Cerrado. In: Goldammer JG (ed) Fire in the tropical biota. Ecological studies, vol 84. Springer, Berlin, pp 82–105

    Chapter  Google Scholar 

  • Da Silva CJM, Bates JM (2002) Biogeographic patterns and conservation in the South American Cerrado: a tropical savanna hotspot: the Cerrado, which includes both forest and savanna habitats, is the second largest South American biome, and among the most threatened on the continent. Bioscience 52:225–234

    Article  Google Scholar 

  • Da-Gloria P, Neves WA, Hubbe M (2017) História das pesquisas bioarqueológicas em Lagoa Santa, Minas Gerais, Brasil. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas 12:919–936

    Google Scholar 

  • Dantas VL, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463

    Article  PubMed  Google Scholar 

  • De Lucena UP, De Sá Araújo JC (2020) “Lagoa Santa, contribuição para a geografia fitoecológica" e a construção acadêmica do (os) cerrado (s): discussões de Peter Lund e Eugenius Warming sobre a origem do cerrado. Brazil J Dev 6:94165–94183

    Article  Google Scholar 

  • De Araújo FM, Ferreira LG, Arantes AE (2012) Distribution patterns of burned areas in the Brazilian biomes: an analysis based on satellite data for the 2002–2010 period. Remote Sens 4:1929–1946

    Article  Google Scholar 

  • De Carvalho BB, Siqueira CV, Pontes RS et al (2014) Avaliação da capacidade de rebrotamento pós-distúrbio das plantas lenhosas típicas dos campos rupestres. Ecol Austral 24:350–355

    Article  Google Scholar 

  • Do Vale VS, Lopes SF (2010) Efeitos do fogo na estrutura populacional de quatro espécies de plantas do cerrado. Rev Ne Biol 19:45–53

    Google Scholar 

  • Enright NJ, Fontaine JB, Lamont BB, Miller BP, Westcott VC (2014) Resistance and resilience to changing climate and fire regime depend on plant functional traits. J Ecol 102:1572–1581

    Article  Google Scholar 

  • Fairman TA, Bennett LT, Nitschke CR (2019) Short-interval wildfires increase likelihood of sprouting failure in fire-tolerant trees. J Environ Manag 231:59–65

    Article  Google Scholar 

  • Felfili JM, Silva Júnior MCD, Dias BJ et al (1999) Estudo fenológico de Stryphnodendron adstringens (Mart.) Coville no cerrado sensu stricto da fazenda Água Limpa no Distrito Federal, Brasil. Braz J Bot 22:83–90

    Article  Google Scholar 

  • Fernandes GW, Pedroni F, Sanchez M, Scariot A, Aguiar LMS, Ferreira G, Machado R, Ferreira ME, Diniz S, Pinheiro R, Costa JAS (2016) Cerrado: em busca de soluções sustentáveis. EditoraVozes, Rio de Janeiro

    Google Scholar 

  • Fidelis A, Zirondi HL (2021) And after fire, the Cerrado flowers: a review of post-fire flowering in a tropical savanna. Flora 280:1–7

    Article  Google Scholar 

  • Gomes L, Miranda HS, Soares-Filho B et al (2020) Responses of plant biomass in the Brazilian savanna to frequent fires. Front for Glob Change 3:507710

    Article  Google Scholar 

  • Gomes L, Lenza E, Souchie FF et al (2021) Long-term post-fire sprouting dynamics and reproduction of woody species in a Brazilian savanna. Basic Appl Ecol 56:58–71

    Article  Google Scholar 

  • Higgins SI, Bond WJ, February EC et al (2007) Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88:1119–1125

    Article  PubMed  Google Scholar 

  • Hoffmann WA (1999) Fire and population dynamics of woody plants in a neotropical savanna: matrix model projections. Ecology 80:1354–1369

    Article  Google Scholar 

  • Hoffmann WA, Solbrig OT (2003) The role of topkill in the differential response of savanna woody species to fire. For Ecol Manag 180:273–286

    Article  Google Scholar 

  • Hoffmann WA, Bazzaz FA, Chatterton NJ et al (2000) Elevated CO2 enhances sprouting of a tropical savanna tree. Oecologia 123:312–317

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WA, Adasme R, Haridasan M et al (2009) Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 90:1326–1337

    Article  PubMed  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW et al (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411

    Article  CAS  PubMed  Google Scholar 

  • Klein AL (2002) Eugen Warming e o cerrado brasileiro: um século depois, 1st edn. Unesp, São Paulo

    Google Scholar 

  • Konstantinidis P, Tsiourlig G, Galatsidas S (2005) Effects of wildfire season on the sprouting of kermes oak (Quercus coccifera L.). For Ecol Manag 208:15–27

    Article  Google Scholar 

  • Lawes MJ, Richards A, Dathe J et al (2011) Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol 212:2057–2069

    Article  Google Scholar 

  • Le Maitre DC (1992) The relative advantages of seeding and sprouting in fire-prone environments: a comparison of life histories of Protea neriifolia and Protea nitida. In van Wilgen BW, Richardson DM, Kruger FJ, van Hensbergen HJ (eds) Fire in South African mountain fynbos ecological studies, vol 93. Springer, New York, pp 123–144

  • Legendre P (2003) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova Odessa

  • Lund PW (1845) Notice sur des ossements humains fossils, trouvés dans une caverne du Brésil. In: Oldskriftselskab DKN (ed) Mémoires de la Societé Royale des Antiquaires du Nord Société royale des antiquaires du Nord, vol 3. Société royale des antiquaires du Nord, Berling, pp 49–77

  • Maracahipes L, Carlucci MB, Lenza E et al (2018) How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter-and intraspecific levels in savanna and forest woody plants. Perspect Plant Ecol Evol Syst 1:17–25

    Article  Google Scholar 

  • Massi KG, Franco AC (2016) How does sprouting response differ among three species of savanna trees and in relation to plant size? Acta Bot Bras 30:693–699

    Article  Google Scholar 

  • Medeiros MB, Miranda HS (2005) Mortality of woody species in a campo sujo after three prescribed annual fires. Acta Bot Bras 19:493–500

    Article  Google Scholar 

  • Medeiros MB, Miranda HS (2008) Post-fire sprouting and mortality in cerrado woody plant species over a three-year period. Edin J Bot 65:53–68

    Article  Google Scholar 

  • Mello JCP, Petereit F, Nahrstedt A (1999) A dimeric proanthocyanidin from Stryphnodendron adstringens. Phytochemistry 51:1105–1107

    Article  Google Scholar 

  • Midgley J, Bond W (2011) Pushing back in time: the role of fire in plant evolution. New Phytol 191:5–7

    Article  PubMed  Google Scholar 

  • Miranda AC, Miranda HS, Dias IDFO et al (1993) Soil and air temperatures during prescribed cerated fires in Central Brazil. J Trop Ecol 9:313–320

    Article  Google Scholar 

  • Miranda AI, Martins V, Cascão P et al (2010) Monitoring of firefighters exposure to smoke during fire experiments in Portugal. Environ Int 36:736–745

    Article  CAS  PubMed  Google Scholar 

  • Miranda JC, Rodríguez-Calcerrada J, Pita P et al (2020) Carbohydrate dynamics in a sprouting species after severe aboveground perturbations. Eur J Res 139:841–852

    Article  CAS  Google Scholar 

  • Moreira F, Catry F, Duarte I et al (2008) A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L.) trees in Southern Portugal. For Ecol 201:77–85

    Article  Google Scholar 

  • Neves WA, Hubbe M, Bernardo D, Strauss A, Araujo A, Kipnis R (2013) Early human occupation of Lagoa Santa, Eastern Central Brazil: craniometric variation of the initial settlers of South America. In: Graf K, Ketron C, Water M (eds) Paleoamerican Odyssey, Center for the Study of the First Americans, Texas, pp 397–412

  • Nolan RH, Collins L, Leigh A et al (2021) Limits to post-fire vegetation recovery under climate change. Plant Cell Environ 44:3471–3489

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. J Veg Sci 10:717–722

    Article  Google Scholar 

  • Pausas JG, Lamont BB, Paula S et al (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol 217:1435–1448

    Article  PubMed  Google Scholar 

  • Pellenz NL, Barbisan F, Azzolin VF et al (2019) Healing activity of Stryphnodendron adstringens (Mart.), a Brazilian tannin-rich species: a review of the literature and a case series. Wound Med 26:1–8

    Article  Google Scholar 

  • Pinheiro MHO, Monteiro R (2010) Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna. Brazil J Biol 70:95–102

    Article  CAS  Google Scholar 

  • Pivello VR, Oliveras I, Miranda HS, Haridasan M, Sato MN, Meirelles ST (2010) Effect of fires on soil nutrient availability in an open savanna in Central Brazil. Plant Soil 337:111–123

    Article  CAS  Google Scholar 

  • Plano Diretor (2017) Revisão do plano diretor participativo de Lagoa Santa—Produto 8—Diagnóstico complementar, Prefeitura de Lagoa Santa

  • Raw A, Hay J (1985) Fire and other factors affecting a population of Simarouba amara in cerradão near Brasília, Brazil. Rev Bras Bot 8:101–107

    Google Scholar 

  • Ribeiro MN, Sanchez M, Pedroni F et al (2012) Fire and dynamics of a woody community in the cerrado of Barra do Garças, Mato Grosso, Brazil. Acta Bot Bras 26:203–217

    Article  Google Scholar 

  • Ride W (1999) International code of zoological nomenclature. International Trust for Zoological Nomenclature, London

    Google Scholar 

  • Ryan CM, Williams M (2011) How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecol Appl 21:48–60

    Article  PubMed  Google Scholar 

  • Salomão AN, Leite AMC (1992) Comportamento de regenerantes de Astronium urundeuva (Fr. All.) Engler em área sob ação antrópica. Acta Bot Bras 6:85–96

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JL et al (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  PubMed  Google Scholar 

  • Santana NC, De Carvalho OA, Gomes RAT et al (2020) Accuracy and spatiotemporal distribution of fire in the Brazilian biomes from the MODIS burned-area products. Int J Wildland Fire 29:907–918

    Article  Google Scholar 

  • Sato MN, Garda AA, Miranda HS (1998) Effects of fire on the mortality of woody vegetation in Central Brazil. In Viegas TX (ed) Proceedings of the 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, ADAI University of Coimbra, Coimbra, pp 1777–1784

  • Schutz AEN, Bond WJ, Cramer MD (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160:235–246

    Article  PubMed  Google Scholar 

  • Setterfield AS (1997) The impact of experimental fire regimes on seed production in two tropical eucalypt species in northern Australia. Austral J Ecol 22:279–287

    Article  Google Scholar 

  • Simon MF, Pennington T (2012) Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int J Plant Sci 173:711–723

    Article  Google Scholar 

  • Souchie FF, Pinto JRR, Lenza E, Gomes L (2017) Post-fire sprouting strategies of woody vegetation in the Brazilian savanna. Acta Bot Bras 31:260–266

    Article  Google Scholar 

  • Veenendaal EM, Torello-Raventos M, Miranda HS et al (2018) On the relationship between fire regime and vegetation structure in the tropics. New Phytol 218:153–166

    Article  PubMed  Google Scholar 

  • Waldrop TA, White DL, Jones SM (1992) Fire regimes for pine-grassland communities in the southeastern United States. For Ecol Manag 47:195–210

    Article  Google Scholar 

  • Warming E (1982) Lagoa Santa, EDUSP/Itatiaia, Belo Horizonte/São Paulo

  • Wilkinson L (2000) SYSTAT 10: Statistics II. SPSS Inc, Chicago

    Google Scholar 

  • Williams RJ, Cook GD, Gill AM et al (1999) Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Austral J Ecol 24:50–59

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall International Inc, London

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable inputs, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) the Centro de Instrução e Adaptação da Aeronáutica team (in special Cap Felipe de Moura Ribeiro and Brig Mário Sérgio Rodrigues da Costa) , and the Bio-Bridge Initiative (BBI)/CDB—Cascading Long Term Effects of Fire on Savanna Biodiversity in the southern hemisphere, Brazil and Namibia. We would also like to thank Arthur Lamouiner Moura for his encouragement and suggestions for the development of this research.

Author information

Authors and Affiliations

Authors

Contributions

BSSF performed all field collection and contributed to data analysis and writing; Y Oki contributed to field collection, data analysis and writing; JECF contributed to the design, data analysis and writing; RA assisted in data analysis and writing; VAB contributed with field collection and writing; GWF supervised the project, contributed to data analysis, writing.

Corresponding author

Correspondence to Geraldo Wilson Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, B.S.S., Oki, Y., Figueira, J.E.C. et al. Effects of fire on mortality and resprouting patterns of Stryphnodendron adstringens (Fabaceae). Braz. J. Bot 46, 705–714 (2023). https://doi.org/10.1007/s40415-023-00906-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00906-8

Keywords

Navigation