Skip to main content
Log in

Fabaceae leaf morphogenetic evolution: the leaf-lamina architectural variation in the Fabaceae flora of Indian Western Ghats, compared with that genetically characterized in the Fabaceae model species Pisum sativum and Medicago truncatula

  • Research article
  • Published:
Proceedings of the Indian National Science Academy Aims and scope Submit manuscript

Abstract

A total of 745 Fabaceae species-516 Faboideae, 192 Caesalpinioideae, 21 Detarioideae, 14 Cercidoideae and 2 Dialioideae species-, that inhabit Indian Western Ghats region, were characterized for their leaf lamina morphology. In all 16 leaf lamina types were identified, 12 of which are known and genetically understood in the model Faboideae Fabaceae species Pisum sativum and Medicago truncatula. Among the 16 leaf types, 5 were of simple type, 6 of unipinnate imparipinnate type, 2 of unipinnate paripinnate type, 2 of bipinnate paripinnate type and 1 of bipinnate imparipinnate type. Unifoliate leaves in Faboideae species were either in the form a simple tendril or a simple pinna. None of the Faboideae-species of tree habit was observed to produce unifoliate leaves. There were no herb species in other subfamilies that formed unifoliate leaves. Faboideae species bearing bipinnate leaves were absent. In Caesalpinioideae, different species produced all the 4 types of compound leaves. Cercidoideae and Detarioideae species were observed to bear largely unifoliate or bifoliate compound leaves. Simple pinnae in Cercidoideae and Detarioideae differed from those in Faboideae by having multiple primary veins. All leaf types were assigned pathway of origin. Whereas it is known that types leaf evolved from unipinnate imparipinnate leaf in Faboideae, it is suggested that unifoliate leaves in Cercidiodeae and Mimosoideae evolved from bipinnate paripinnate leaf types genotypes or vice versa. Evidence was found in favour of monophyletic origin followed by divergence in the genetic mechanisms, in the evolutionary process of leaf lamina architectural polymorphism in Fabaceae. Several directions of new research on the genetics of leaflamina morphogenesis in Fabaceae were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C.A., Buggs, R.: Hybridization and speciation. J. Evol. Biol. 26, 229–246 (2013)

    Article  CAS  Google Scholar 

  • Baenziger, H.: Inheritance of the torn-leaf mutant in alfalfa. Can. J. Plant Sci. 57, 47–50 (1977)

    Article  Google Scholar 

  • Balan, A.P., Pradeep, S.V., Prakashkumar, R.: A new variety of Millettia pulchra (Fabaceae-Papilionaceae), from Western Ghats, India. Biodiv. Int. J. 1, 96–98 (2017a)

    Article  Google Scholar 

  • Balan, A.P., Pradeep, S.V., Udayan, P.S.: Vigna sathishiana (Fabaceae): a new species from southern Western Ghats, India. J. Jpn. Bot. 92, 193–198 (2017b)

    Google Scholar 

  • Bar, M., Ori, N.: Leaf development and morphogenesis. Development 141, 4219–4230 (2014)

    Article  CAS  Google Scholar 

  • Bar, M., Ori, N.: Compound leaf development in model plant species. Curr. Opin. Plant Biol. 23, 61–69 (2015)

    Article  Google Scholar 

  • Barrett, R.D.H., Schluter, D.: Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008)

    Article  Google Scholar 

  • Bhide, M.V., Desak, S.C.: A small leaf mutant in groundnut. Poona Agric. Coll. Mag. 59, 113–114 (1970)

    Google Scholar 

  • Blein, T., Pulido, A., Vialette-Guiraud, A., Nikovics, K., Morin, H., Hay, A., Johansen, I.E., Tsiantis, M., Laufs, P.: A conserved molecular framework for compound leaf development. Science 322, 1835–1839 (2008)

    Article  CAS  Google Scholar 

  • Branch, W.D.: Revolute-leaf, a new completely dominant mutant in peanut. Peanut Sci. 45, 67–69 (2018)

    Article  Google Scholar 

  • Bruneau, A., Doyle, J.J., Herendeen, P.H., Colin, E., Kenicer, G., Lewis, G., Mackinder, B., Pennington, R.T., Sanderson, M.J., Wojciechowski, M.F., Koenen, E.: Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62, 217–248 (2013)

    Article  Google Scholar 

  • Champagne, C., Sinha, N.: Compound leaves: equal to the sum of their parts? Development 131, 4401–4412 (2004)

    Article  CAS  Google Scholar 

  • Chatan, W.: A new species of Bauhinia L. (Caesalpinioideae, Leguminosae) from Nakhon Phanon Province, Thailand. Phytokeys 26, 1–5 (2013)

    Article  Google Scholar 

  • Chavan, S., Sardesai, M.M., Pokale, D.S.: Alysicarpus sanjappae (Leguminosae; Papilionoideae) a new species from the Western Ghats of India. Kew. Bull. 68, 183–186 (2013)

    Article  Google Scholar 

  • Chen, J., Yu, J., Ge, L., Wang, H., Berbel, A., Liu, Y., Chen, Y., Li, G., Tadege, M., Wen, J., Cosson, V., Mysore, K.S., Ratet, P., Madueño, F., Bai, G., Chen, R.: Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 107, 10754–10759 (2010)

    Article  CAS  Google Scholar 

  • Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., Lin, Z., Tang, H., Zhang, L.: The sequenced angiosperm genomes and genome databases. Front. Plant Sci. 9, 418 (2018)

    Article  Google Scholar 

  • Coyne, J.A., Orv, H.A.: Speciation. Sinauer Associate, Sunderland (2004)

    Google Scholar 

  • Dalavi, J.V., Bramhdande, S., Pokle, D., Yadav, S.: Alysicarpus bhuibavadensis (Fabaceae) a new species from Western Ghats of India. Phytotexa 427, 285–290 (2020)

    Article  Google Scholar 

  • Datar, M.N., Watve, A.V.: Vascular plant assemblage of cliffs in Northern Western Ghats, India. J. Threatened Taxa 10, 11271–11284 (2018)

    Article  Google Scholar 

  • Davis, T.M.: Linkage relationships of genes for leaf morphology, flower colour, and root nodulation in chickpea. Euphytica 54, 117–123 (1991)

    Article  Google Scholar 

  • De Souza, E.R., Krishnaraj, M.V., de Queiroz, L.P.: Sanjappa, a new genus in the tribe Ingae (Leguminoseae: Mimosoideae) from India. Rheedea 26, 1–12 (2016)

    Google Scholar 

  • DeMason, D.A., Chawla, R.: Roles of auxin during morphogenesis of the compound leaves of pea (Pisum sativum). Planta 18, 435–448 (2004)

    Article  CAS  Google Scholar 

  • DeMason, D.A., Chetty, V.J.: Interactions between GA, Auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the Uni-Tac mutant is rescued. Am. J. Bot. 98, 775–791 (2011)

    Article  CAS  Google Scholar 

  • DeMason, D.A., Chetty, V.J.: Phenotypic characterization of the CRISPA (ARP Gene) mutant of pea (Pisum sativum; Fabaceae): A reevaluation. Am. J. Bot. 101, 408–427 (2014)

    Article  Google Scholar 

  • DeMason, D.A., Villani, P.J.: Genetic control of leaf development in pea (Pisum sativum). Int. J. Plant Sci. 162, 493–511 (2001)

    Article  CAS  Google Scholar 

  • DeMason, D.A., Chetty, V., Barkawi, L.S., Liu, X., Cohen, J.D.: Unifoliata-Afila interactions in pea leaf morphogenesis. Am. J. Bot. 100, 478–495 (2013)

    Article  CAS  Google Scholar 

  • Dengler, N.G., Tsukaya, H.: Leaf morphogenesis in dicotyledons: current issues. Int. J. Plant Sci. 162, 459–464 (2001)

    Article  Google Scholar 

  • Di Giacomo, E., Sestili, F., Iannelli, M.A., Testone, G., Mariotti, D., Frugis, G.: Characterization of KNOX genes in Medicago truncatula. Plant Mol. Biol. 67, 135–150 (2008)

    Article  CAS  Google Scholar 

  • Dong, Z., He, H.: Phyllode anatomy and histochemistry of four Acacia species (Leguminosae: Mimosoideae) in the great sandy desert, North-Western Australia. J. Arid Environ. 139, 110–120 (2017)

    Article  Google Scholar 

  • Efroni, I., Eshed, Y., Lifschitz, E.: Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22, 1019–1032 (2010)

    Article  CAS  Google Scholar 

  • Evert, R.F., Eichhorn, S.E.: Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd edn. Wiley, Hoboken (2006)

    Book  Google Scholar 

  • Fisher, J.B., Blanco, M.A.: Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae). Am. J. Bot. 101, 608–616 (2014)

    Article  Google Scholar 

  • Gaikwad, S.P., Gore, R.D., Garad, K.U.: Additions to the flora of Marathwadaregion of Maharashtra, India. J. Threatened Taxa 4, 2515–2523 (2012)

    Article  Google Scholar 

  • Gaikwad, S.P., Gore, R.D., Garad, K.U., Gaikwad, S.: Endemic flowering plants of Northern Western Ghats (Sahyadri Ranges) of India: a checklist. Check List 10, 461–472 (2014a)

    Article  Google Scholar 

  • Gaikwad, S.P., Gore, R.D., Randive, S.D., Garad, K.U.: Vigna yadavii (Leguminosae, Papilionioideae), a new species from Western Ghats, India. Biodivers. data J. 2, (2014b)

    Article  Google Scholar 

  • Gaikwad, S.P., Gore, R.D., Randive, S.: Vigna pandeyana (Fabaceae), a new species from Northern Ghats, India. Biodivers. Data J. 3, (2015)

    Article  Google Scholar 

  • Ganeshaiah, K.N., Umashankar, R.: Sasya Sahyadri: Distribution, Taxonomy and Diversity of Plants of Western Ghats. University of Agricultural Sciences, Banglore (2003)

    Google Scholar 

  • Ge, L., Peng, J., Berbel, A., Madueño, F., Chen, R.: Regulation of compound leaf development by PHANTASTICA in Medicago truncatula. Plant Physiol. 164, 216–228 (2014)

    Article  CAS  Google Scholar 

  • Geeta, R., Dávalos, L.M., Levy, A., Bohs, L., Lavin, M., Mummenhoff, K., Sinha, N., Wojciechowski, M.F.: Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytol. 193, 481–493 (2012)

    Article  CAS  Google Scholar 

  • Gholava, A.R., Mane, R.N., Gore, R.D., et al.: Crotolaria kanchiana (Fabaceae), a new species from Balaghat ranges of Maharashtra, India. Phytotaxa 409, 233–238 (2019)

    Article  Google Scholar 

  • Givnish, T.J.: Ecology of plant speciation. Taxon 59, 1329–1366 (2010)

    Article  Google Scholar 

  • González, N., Inze, D.: Molecular systems governing leaf growth: from genes to networks. J. Exp. Bot. 66, 1045–1054 (2015)

    Article  CAS  Google Scholar 

  • Hatt, C., Mankessi, F., Durrant, J., et al.: Characteristics of Acacia mangium shoot apical meristems in natural and in vitro condition in relation to heteroblasty. Trees Struct. Funct. 26, 1031–1044 (2012)

    Article  Google Scholar 

  • He, L., Liu, Y., He, H., et al.: A molecular framework underlying the compound leaf patterning in Medicago truncatula. Nat. Plants 6, 511–521 (2020)

    Article  CAS  Google Scholar 

  • Himanen, K., Adam, G.D., Lizsebettens, V.: Genetic and epigenetic control of leaf size and shape. Int. J. Plant Dev. Biol. 1, 226–238 (2007)

    Google Scholar 

  • Hofer, J., Turner, L., Hellens, R., Ambrose, M., Matthews, P., Michael, A., Ellis, N.: UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 7, 581–587 (1997)

    Article  CAS  Google Scholar 

  • Jang, G., Yoon, Y., Choi, Y.D.: Crosstalk with jasmonic acid integrates multiple response in plant development. Int. J. Mol. Sci. 21, 305–320 (2020)

    Article  CAS  Google Scholar 

  • Jeong, N., Suh, S.J., Kim, M.H., Lee, S., Moon, J.K., Kim, H.S., Jeong, S.C.: Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24, 4807–4818 (2013)

    Article  CAS  Google Scholar 

  • Jiamenez-S, A.A.: Revised nomenclature of compound leaves as an aid in field identification of tropical trees and other woody plants. Volpia 9, 1–11 (2011)

    Google Scholar 

  • Jiao, K., Li, X., Su, S., Guo, W., Guo, Y., Guan, Y., Hu, Z., Shen, Z., Luo, D.: Genetic control of compound leaf development in the mungbean (Vigna radiata L.). Hortic. Res. 6, 23 (2019)

    Article  CAS  Google Scholar 

  • Kaplan, D.R.: Heteroblastic leaf development in Acacia: morphological and morphogenetic implications. Cellule 73, 135–203 (1980)

    Google Scholar 

  • Kaplan, D.R.: Fundamental concepts of leaf morphology and morphogenesis: A contribution to the interpretation of molecular genetic mutants. Int. J. Plant Sci. 162, 465–474 (2001)

    Article  CAS  Google Scholar 

  • Koenen, E.J.M., Ojeda, D.I., Steeves, R., et al.: Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny subfamilies. New Phytol. 225, 1355–1369 (2020)

    Article  CAS  Google Scholar 

  • Krishnaraj, M.V., Mohanan, N., Antony, V.T.: A new variety of Crotolaria assamica (Fabaceae-Papilionioideae) from the Western Ghats India. Rheedea 21, 153–156 (2011)

    Google Scholar 

  • Kumar, S., Sharma, V.: Abnormal leaf morphology associated with primary and secondary vein patterning defects in Catharanthus roseus: mid-vein defect converts simple leaf into binate leaf. Proc. Natl. Acad. Sci. India Sect. B 83, 241–253 (2012)

    Article  CAS  Google Scholar 

  • Kumar, S., Rai, S.K., Pandey-Rai, S., Srivastava, S., Singh, D.: Regulation of unipinnate character in the distal tendrilled domain of compound leaf-blade by the gene MULTIFOLIATE PINNA (MFP) in Pea Pisum sativum. Plant Sci. 166, 929–940 (2004)

    Article  CAS  Google Scholar 

  • Kumar, S., Mishra, R.K., Chaudhary, S., Pandey, R., Yadav, G.: Co-regulation of biomass partitioning by leafblade morphology genes AFILA MULTIFOLIATE-PINNA, TENDRIL-LESS and UNIFOLIATA in grain pea Pisum sativum. Proc. Indian Natl. Sci. Acad. 75, 15–25 (2009a)

    CAS  Google Scholar 

  • Kumar, S., Mishra, R.K., Kumar, A., et al.: Regulation of stipule development by COCHLEATA and STIPULE-REDUCED genes in Pisum sativum. Planta 230, 449–458 (2009b)

    Article  CAS  Google Scholar 

  • Kumar, A., Sharma, V., Kumar, S.: Interaction between Cochleata and Stipule reduced mutations results in ex-stipulate hypertrophied leaves in Pisum sativum. Ind. J. Exp. Biol. 51, 492–501 (2013a)

    CAS  Google Scholar 

  • Kumar, A., Sharma, V., Khan, M., Hindala, M.R., Kumar, S.: Auxin transport inhibitor induced low complexity petiolated leaves and sessile leaf-like stipules and architectures of heritable leaf and stipule mutants in Pisum sativum suggest that its simple lobed stipules and compound leaf represent ancestral forms in angiospems. J. Genet. 92, 25–66 (2013b)

    Article  CAS  Google Scholar 

  • Kumar, S., Kumari, R., Sharma, V.: Transgenerational inheritance in plants of acquired defence against biotic and abiotic stresses: implications and applications. Agric. Res. 4, 109–120 (2015)

    Article  CAS  Google Scholar 

  • Kumari, R., Yadav, G., Sharma, V., Sharma, V., Kumar, S.: Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of mendelian inheritance in Catharanthus roseus. J. Genet. 92, 499–511 (2013)

    Article  CAS  Google Scholar 

  • Latha, M., Scariak, S., Krishnaraj, M.V., et al.: Vigna konkanensis (Fabaceae-Papilionioideae) a new species from the West Coast of India. J. Plant Tax Geogr. 69, 49–52 (2014)

    Google Scholar 

  • Lewis, G.: Plants in peril. Curtis’s Bot. Mag. 2, 380–382 (1985)

    Article  Google Scholar 

  • Lewis, G., Schirire, B., Mackinder Block, M. (eds.): Legumes of the World. Royal Botanik Gardens, Kew, Richmond (2005)

    Google Scholar 

  • Li, X., Liu, W., Zhuang, L., Zhu, Y., Wang, F., Chen, T., Yang, J., Ambrose, M., Hu, Z., Weller, J.L., Luo, D.: BIGGER ORGANS and ELEPHANT EAR-LIKE LEAF1 control organ size and floral organ internal asymmetry in pea. J. Exp. Bot. 70, 179–191 (2019)

    Article  CAS  Google Scholar 

  • LPWG: Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62, 217–248 (2013)

    Article  Google Scholar 

  • LPWG: A new subfamily classification of the Leguminosae based on taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017)

    Article  Google Scholar 

  • Marcotrigiano, M.: Genetic mosaics and the analysis of leaf development. Int. J. Plant Sci. 162, 513–525 (2001)

    Article  CAS  Google Scholar 

  • Marques, D.A., Meier, J.I., Seehausen, O.: A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531–544 (2019)

    Article  Google Scholar 

  • Meng, Y., Liu, H., Wang, H., Liu, Y., Zhu, B., Wang, Z., Hou, Y., Zhang, P., Wen, J., Yang, H., Mysore, K.S., Chen, J., Tadege, M., Niu, L., Lin, H.: HEADLESS, a WUSCHEL homolog, uncovers novel aspects of shoot meristem regulation and leaf blade development in Medicago truncatula. J. Exp. Bot. 70, 149–163 (2019)

    Article  CAS  Google Scholar 

  • Micol, J.L., Hake, S.: The development of plant leaves. Plant Physiol. 131, 389–394 (2003)

    Article  CAS  Google Scholar 

  • Mishra, R.K., Chaudhary, S., Kumar, A., Kumar, S.: Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leafblade architecture in Pisum sativum. Planta 230, 177–190 (2009)

    Article  CAS  Google Scholar 

  • Myers, N., Mittermeler, R.A., Mittermeler, C.G., Da Fonseca, G.A.B., Kent, J.: Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    Article  CAS  Google Scholar 

  • Nayar, T.S., Beegam, A.R., Mohanan, N., Rajkumar, G.: Flowering plants of Kerala. Tropical Botanical Garden and Research Institute, Thiruvananthapuram (2006)

    Google Scholar 

  • Nayar, T.S., Beegam, A.R., Sibi, M.: Flowering Plants of Western Ghats, India (2 volumes) Thiruvananthapuram, p. p1700. Jawahar Lal Nehru Tropical Botanic Garden and Research Institute, Kerala (2014)

    Google Scholar 

  • Nicotra, A.B., Leigh, A., Boyce, C.K., Jones, C.S., Niklas, K.J., Royer, D.L., Tsukaya, H.: The evolution and functional significance of leaf shape in the angiosperms. Funct. Plant Biol. 38, 535–552 (2011)

    Article  Google Scholar 

  • Otto, S.P., Whitton, J.: Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000)

    Article  CAS  Google Scholar 

  • Owens, S.A.: Secondary and tertiary pulvini in the unifoliate leaf of Cercis canadensis L. (Fabaceae) with comparison to Bauhinia purpurea L. Int. J. Plant Sci. 161, 583–597 (2000)

    Article  Google Scholar 

  • Pasquet-Kok, A., Creese, C., Sack, L.: Turning over a new leaf: multiple functional significances of leaves versus phyllodes in Hawaiian Acacia koa. Plant, Cell Environ. 33, 2084–2100 (2010)

    Article  Google Scholar 

  • Pattanashetti, S.K.: Inheritance of morphological traits and pod features in groundnut Arachis hypogea. Ind. J. Gen. Plant Breed. 68, 157–162 (2008)

    Google Scholar 

  • Peng, J., Chen, R.: Auxin Efflux Transporter MtPIN10 regulates compound leaf and flower development in Medicago truncatula. Plant Signal. Behav. 6, 1537–1544 (2011)

    Article  CAS  Google Scholar 

  • Peng, J., Yu, J., Wang, H., Guo, Y., Li, G., Bai, G., Chen, R.: Regulation of compound leaf development in Medicago truncatula by fused compound Leaf1, a class M KNOX Gene. Plant Cell 23, 3929–3943 (2011)

    Article  CAS  Google Scholar 

  • Peng, J., Berbel, A., Madueño, F., Chen, R.: AUXIN RESPONSE FACTOR3 regulates compound leaf patterning by directly repressing PALMATE-LIKE PENTAFOLIATA1 expression in Medicago truncatula. Front. Plant Sci. 8, 1630 (2017)

    Article  Google Scholar 

  • Prajapati, S., Kumar, S.: Interaction of the UNIFOLIATA-TENDRILLED ACACIA gene with AFILA and TENDRIL-LESS genes in the determination of leaf blade growth and morphology in Pea Pisum sativum. Plant Sci. 162, 713–721 (2002)

    Article  CAS  Google Scholar 

  • Pundir, R.P.S., Mangesha, M.H., Reddy, K.N.: Leaf types and their genetics in chickpea (Cicer arietinum). Euphytica 45, 197–200 (1990)

    Article  Google Scholar 

  • Punekar, S., Lakshminarsimhan, P.: Flora of Arshi National Park, Western Ghats Karnataka. Biosphere Publications, Parvati (2011)

    Google Scholar 

  • Ranjit Daniels, R. J.: Biodiversity of the Western Ghats-An overview. http://www.gov.in/envis/rain_forest/chapter2.htm (2007)

  • Rao, R.R.: Floristic diversity in Western ghats: documentation, conservation and bioprospection-a priority agenda for action. Sahyadri E_news.issue.XXXVIII. ENVISECES, Indian Institute of Science, Bangalore (2012)

  • Rao, R.S.: Flora of Goa, Diu, Daman, Dadra and Nagarhaveli. Botanical Survey of India (1985–1986)

  • Rather, S.A., Subramaniam, S., Danda, S., Pandey, A.K.: Discovery of two new species of Crotalaria (Leguminosae, Crotolarieae) from Western Ghats, India. PLoS ONE 13, e0192226 (2018)

    Article  CAS  Google Scholar 

  • Ravikumar, K., Babu, N.M.G., Tangavelou, : Crotalaria lanceolata (Leguminosae: Faboideae): a new record for India. Rheedea 28, 102–104 (2018)

    Article  Google Scholar 

  • Runions, A., Tsiantis, M., Prusinkiewicz, P.: A common developmental program can produce diverse leaf shapes. New Phytol. 216, 401–418 (2017)

    Article  CAS  Google Scholar 

  • Sach, L., Scoffoni, C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198, 983–1000 (2013)

    Article  Google Scholar 

  • Sarvalingam, A., Rajendran, A.: Rare, endangered and threatened (REJ) climbers of southern Western Ghats. Revista Chilena de Histera Nat 89, 9 (2016)

    Article  Google Scholar 

  • Sasidharan, N., Sujanapal, P.: A new species of Humboldtia vahliana (Fabaceae, Caesalpinioideae) from the Western Ghats, India. Rheedea 17, 21–23 (2007)

    Google Scholar 

  • Sayou, C., Monniaux, M., Nanao, M.H., Moyroud, E., Brockington, S.F., Thevenon, E., Chahtane, H., Warthmann, N., Melkonian, M., Zhang, Y., Wong, G.K.S., Weigel, D., Parcy, F., Dumas, R.: A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014)

    Article  CAS  Google Scholar 

  • Scotland, R.W.: Deep homolgy: a view from systematics. Bioassays 32, 438–449 (2010)

    Article  Google Scholar 

  • Setharam, Y.N., Kotresha, K.: Foliar venation of some species of BAUHINIA L and HARDWICKIA BINATA Roxb (Casesalpinioideae). Phytomorph 41, 51–59 (1998)

    Google Scholar 

  • Sharma, V., Kumar, S.: Stipules are the principal photosynthetic organs in the papilionoid species Lathyrus aphaca. Nat. Acad. Sci. Lett. 35, 75–78 (2012)

    Article  Google Scholar 

  • Sharma, V., Kumar, S.: Parallelismic homoplasy of leaf and stipule phenotypes among genetic variants of Pisum sativum and Medicago truncatula and some taxa of Papilionoideae, Caesalpinioideae and Mimosoideae subfamilies of the leguminosae flora of Delhi. Plant Syst. Evol. 299, 887–911 (2013)

    Article  Google Scholar 

  • Sharma, V., Tripathi, B.N., Kumar, S.: Organ-wise homologies of stipule, leaf and inflorescence between Pisum sativum genetic variants, Delonix regia and Caesalpinia bonduc indicate parallel evolution of morphological regulation. Plant Syst. Evol. 298, 1167–1176 (2012)

    Article  Google Scholar 

  • Sharma, V., Tripathi, B.N., Kumar, S.: The lld mutation in Pisum sativum used as a genetic tool to discern the plant leaflet/leaf developmental process. Indian J. Exp. Biol. 51, 421–434 (2013)

  • Shubin, N., Tabin, C., Carroll, S.: Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009)

    Article  CAS  Google Scholar 

  • Singh, V.P., Chaturvedi, S.N.: Comparative mutagenic effects of EMS and NMC in Vigna radiata L. Wifezek with DMSO. Ind. J. Bot. 5, 54–57 (1982)

    CAS  Google Scholar 

  • Singh, N.P., Karthikeyan, : Flora of Maharashtra State. Dicotyledonous. Botanical Survey of India, Calcutta (2000)

    Google Scholar 

  • Sousa-Baena, M.S., Sinha, N.R., Harnandes-Lopez, J., Lohmann, L.G.: Convergent evolution and the diverse ontogenetic origins of tendrils in angiosperms. Front. Plant Sci. 9, 403 (2018)

    Article  Google Scholar 

  • Subbaiyan, B., Samidurai, P., Prabhu, M.K., Ramakrishnan, R., Thangapandian, V.: Inventory of rare, endangered and threatened (RET) plant species in Maruthamalai Hills, Western Ghats of Tamilnadu, South India. Our Nat. 12, 37–43 (2014)

    Article  Google Scholar 

  • Tah, P.R.: Induced macromutations in mungbean (Vigna radiata (L) Wilczek). Int. J. Bot. 2, 219–228 (2006)

    Article  CAS  Google Scholar 

  • Tashiro, R.M., Han, Y., Monteros, M.J., Bouton, J.H., Parrott, W.A.: Leaf trait coloration in white clover and molecular mapping of the red midrib and leaflet number traits. Crop Sci. 50, 1260–1268 (2010)

    Article  Google Scholar 

  • Thomas, B., Kumar, K.M.P., George, S., Rajendran, A., Balachandran, I.: A new variety of Crotolaria ramosissima (Fabaceae) from Tamil Nadu, India. Asian Pacific J. Trop. Biomed. 2012, 1–3 (2012)

    Google Scholar 

  • Toker, C., Oncu Ceylan, F., Ertoy Inci, N., Yildirim, T., Cagirgan, M.I.: Inheritance of leaf shape in the cultivated chickpea (Cicer arietinum L.). Turk. J. Field Crops 17, 16–18 (2012)

    Google Scholar 

  • Townsley, B.T., Sinha, N.R.: A new development: evolving concepts in leaf ontogeny. Annu. Rev. Plant Biol. 63, 535–562 (2012)

    Article  CAS  Google Scholar 

  • Tsukaya, H.: Leaf shape: genetic controls and environmental factors. Int. J. Dev. Biol. 49, 547–555 (2005)

    Article  Google Scholar 

  • vander Pijl, : The leaf of Bauhinia. Acta Botanica Netherlandica 1, 287–309 (1952)

    Article  Google Scholar 

  • Via, S.: Natural selection in action during speciation. Proc. Natl. Acad. Sci. U.S.A. 106, 9939–9946 (2009)

    Article  CAS  Google Scholar 

  • Villani, P.J., DeMason, D.A.: Roles of the Af and Tl genes in pea leaf morphogenesis: short ontogeny and leaf development in heterozygote. Ann. Bot. 85, 123–135 (2020)

    Article  CAS  Google Scholar 

  • Viswanathan, M.B., Manikandan, U., Tangavelu, A.C.: A new species of Aganope (Fabaceae) from the Southern Western Ghats, Peninsular India. Adansonia ser 325, 205–210 (2003)

    Google Scholar 

  • Walters, G.A., Bartholomew, D.P.: Adaptation of Acacia koa leaves and phyllodes to change in photosynthetic photon flux density. For. Sci. 36, 1050–1060 (1990)

    Google Scholar 

  • Wanderlin, R., Larsen, K., Larsen, S.S.: Reorganization of circideae (Fabaceae: caesalpinioideae). Davske Biologiske Shrifler 28, 1–40 (1987)

    Google Scholar 

  • Wang, Y., Chen, R.: Regulation of compound leaf development. Plants 3, 1–17 (2014)

    Article  CAS  Google Scholar 

  • Wang, H., Chen, J., Wen, J., Tadege, M., Li, G., Liu, Y., Mysore, K.S., Ratet, P., Chen, R.: Control of compound leaf development by Floricaula/Leafy ortholog Single Leaflet1 in Medicago truncatula. Plant Physiol. 146, 1759–1772 (2008)

    Article  CAS  Google Scholar 

  • Wang, Q., Song, Z., Chen, Y., Shen, S., Li, Z.: Leaves and fruits of Bauhinia (Leguminosae, Caesalpinioideae, Cercideae) from the oligocene Ningming formation of Guangxi, South China and their biogeographic implications. BMC Evol. Biol. 14, 88 (2014)

    Article  Google Scholar 

  • Wang, H., Xu, Y., Hong, L., Zhang, X., Wang, X., Zhang, J., Ding, Z., et al.: Headless regulates auxin response and compound leaf morphogenesis in Medicago truncatula. Front. Plant Sci. 10, 1024 (2019)

    Article  Google Scholar 

  • Shodhganga.inflibnet.ac.in > 13_chapter 6 (5) pdf, chapter 6, Hardwickia binata roxb

  • Yaxley, J.L.: Leaf and seed development in pea (Pisum sativum L.). University of Tasmania, Hobart (2002)

    Google Scholar 

  • Yoshikawa, T., Ozawa, S., Sentoku, N., Itoh, J.-I., Nagato, Y., Yokoi, S.: Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta 28, 229–237 (2013)

    Article  CAS  Google Scholar 

  • Zhengyi, W., Raven, P.H., Hong, D.: Flora of China, 10, pp. 6–21. Science Press Beijing and Missouri Botanical Garden Press, St. Louis (2010)

    Google Scholar 

  • Zhou, C., Han, L., Hou, C., Metelli, A., Qi, L., Tadege, M., Mysore, K.S., Wang, Z.Y.: Developmental analysis of a Medicago truncatula Smooth Leaf Margin1 mutant reveals context-dependent effects on compound leaf development. Plant Cell 23, 2106–2124 (2011)

    Article  CAS  Google Scholar 

  • Zhou, C., Han, L., Fu, C., Wen, J., Cheng, X., Nakashima, J., Ma, J., et al.: The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation as revealed by analyses of an argonaute 7/lobedleaflet1 mutant in Medicago truncatula. Plant Cell 25, 4843–4862 (2013)

    Google Scholar 

  • Zhou, C., Han, L., Zhao, Y., Wang, H., Nakashima, J., Tong, J., Xiao, L., Wang, Z.-Y.: Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula. Plant J. 100, 562–571 (2019)

    Article  CAS  Google Scholar 

  • Zhuang, L.L., Ambrose, M., Rameau, C., Weng, L., Yang, J., Hu, X.H., Luo, D., Li, X.: LATHYROIDES, encoding a WUSCHEL-related homeobox1 transcription factor, controls organ lateral growth, and regulates tendril and dorsal petal identities in garden pea (Pisum sativum L.). Mol. Plant 5, 1333–1345 (2012)

    Article  CAS  Google Scholar 

  • Zohary, D.: Domestication of the carob (Ceratonia siliqua L). Israel J. Plant Sci. 50(Supplement 1), 141–145 (2013)

    Google Scholar 

Download references

Acknowledgements

Authors express thanks to the Director of NIPGR for facilities. SK thanks Indian National Science Academy for its Honorary Emeritusship. Financial assistance from SKIRED is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sharma, V. & Kumari, R. Fabaceae leaf morphogenetic evolution: the leaf-lamina architectural variation in the Fabaceae flora of Indian Western Ghats, compared with that genetically characterized in the Fabaceae model species Pisum sativum and Medicago truncatula. Proc.Indian Natl. Sci. Acad. 87, 351–378 (2021). https://doi.org/10.1007/s43538-021-00037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43538-021-00037-2

Keywords

Navigation