Skip to main content

Integrated Forest Biorefinery

  • Chapter
  • First Online:
Biotechnology for Pulp and Paper Processing

Abstract

The development of an integrated forest biorefinery (IFBR) would enable the industry to increase its revenue by producing bioenergy and new biomaterials in addition to traditional wood, pulp, and paper products. The IFBR concept also addresses the societal need to use renewable resources rather than fossil fuels to produce commodity products, liquid fuels, and electricity. The initial visualized IFBR would be based on sulfur-free, alkaline pulping of hardwood with an alkaline hemicellulose extraction step prior to pulping and spent pulping liquor gasification and lignin precipitation after pulping. New products from an IFBR based on alkaline pulping include electric power, new wood composites, liquid fuel, ethanol, chemicals, and polymers. Preextraction generates a feed stream for new bioproducts, while decreasing alkali consumption, increasing delignification rate, and reducing black liquor load. Black liquor gasification and/or lignin precipitation are an integral part of the IFBR, with the synthesis gas and precipitated lignin being the feed for liquid fuel and carbon fibers, respectively. The additional energy requirements of the IFBR would be met by gasification/combustion of waste biomass. The key to the successful implementation of the forest biorefinery (FBR) is to identify possible products that can be economically produced by a pulp and paper mill. Process integration tools can be used to identify these products. A roadmap can be developed once the products have been identified. The successful implementation of the FBR will likely be mill-specific, and will in many cases require strategic collaborations with experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alriksson B, Horváth IS, Sjöede A, Nilvebrant NO, Jönsson LJ (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 121–124:911–922

    Article  Google Scholar 

  • Amidon TE, Francis R, Scott GM, Bartholomew J, Ramarao BV, Wood CD (2007) Pulp and pulping processes from an integrated forest biorefinery. Appl. No. PCT/US2005/013216

    Google Scholar 

  • Anon XX (2007) LignoBoost does business with lignin fuel. Beyond 2:4–5

    Google Scholar 

  • Axegård P (1999) Kretsloppsanpassad massafabrik-Slutrapport, KAM 1 1996–1999, KAMrapport A31, Stiftelsen för Miljöstrategisk forskning

    Google Scholar 

  • Axegård P (2005) The future pulp mill – a biorefinery. In: First international biorefinery workshop, Washington

    Google Scholar 

  • Axegård P (2006a) Lignin removal from black liquor for increased energy efficiency and pulp capacity increase. In: Energy management for pulp and papermakers, Budapest, Hungary, 16–18 Oct 2006, Paper 12, 31pp

    Google Scholar 

  • Axegård P (2006b) Presentation “utilization of black liquor and forestry residues in a pulp mill biorefinery” at the forest based sector technology platform conference, Lahti, Finland, 22–23 Nov 2006

    Google Scholar 

  • Axegård P (2007a) Lignin from black liquor: a valuable fuel and chemical feedstock. In: Biorefining for the pulp and paper industry, Stockholm, Sweden, 10–11 Dec 2007, 34pp

    Google Scholar 

  • Axegård P (2007b) The kraft pulp mill as a biorefinery. In: Third ICEP international colloquium on eucalyptus pulp, Belo Horizonte, Brazil, 4–7 March 2007, 6pp

    Google Scholar 

  • Axegård P, Backlund B, Tomani P (2007) The pulp mill based biorefinery. In: Pulp paper 2007 conference. Biomass conversions, Helsinki, Finland, 5–7 June 2007, pp 19–26

    Google Scholar 

  • Bajpai P (2008) Chemical recovery in pulp and paper making. In: PIRA international, UK, 166pp

    Google Scholar 

  • Bozell JJ, Black SK, Myers M (1995) Clean fractionation of lignocellulosics – a new process for preparation of alternative feedstocks for the chemical industry. In: 8th international symposium on wood and pulping chemistry, Helsinki, Finland, pp 697–704

    Google Scholar 

  • Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute acid wood hydrolysate. J Biosci Bioeng 98(2):122–125

    CAS  Google Scholar 

  • Brown C, Landälv I (2001) The Chemrec Black liquor recovery technology – a status report. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Brown CA, Gorog JP, Leary R, Abdullah Z (2004) The Chemrec black liquor gasifier at New Bern – a status report. In: International chemical recovery conference, Charleston, 6–10 June 2004

    Google Scholar 

  • Chambost V, Stuart PR (2007) Selecting the most appropriate products for the forest biorefinery. Ind Biotechnol 3(2):112–119

    Article  Google Scholar 

  • Closset G (2004) Advancing the forest biorefinery. In: Presentation at forest products techno-business forum, Atlanta, GA, 26–27 Oct 2004

    Google Scholar 

  • Connor E (2007) The integrated forest biorefinery: the pathway to our bio-future. In: International chemical recovery conference: efficiency and energy management, Quebec City, QC, 29 May to 1 June 2007, pp 323–327

    Google Scholar 

  • Cunningham RL, Carr ME, Bagby MO (1986) Hemicellulose isolation of annual plants. In: Biotechnology bioengineering symposium, no. 17, 8th symposium biotechnology for fuels and chemicals, Gatlinburg, 13–16 May 1986, pp 159–168

    Google Scholar 

  • DeCarrera R (2006) Quarterly technical progress report 20 demonstration of black liquor gasification at Big Island. Report 40850R20 http://www.gp.com/containerboard/mills/big/pdf/rpt40850R20.pdf (06-04-28). Accessed on Dec. 2010

  • Durai-Swamy K, Mansour MN, Warren DW (1991) Pulsed combustion process for black liquor gasification. U.S. DOE Report DOE/CE/40893-T1 (DE92003672)

    Google Scholar 

  • Ebringerova A, Hromadova Z, Kaucurakova M, Antal M (1994) Quaternized xylans: synthesis and structural characterization. Carbohyd Polym 24:301–308

    Article  CAS  Google Scholar 

  • Eckert CA, Bush D, Brown JS, Liotta CL (2000) Tuning solvents for sustainable technology. Ind Eng Chem Res 39(12):4615–4621

    Article  CAS  Google Scholar 

  • Eckert CA, Liotta CL, Bush D, Brown J, Hallett J (2004) Sustainable reactions in tunable solvents. J Phys Chem B 108:18108–18118

    Article  CAS  Google Scholar 

  • Farmer, MC (2005) The adaptable integrated biorefinery for existing pulp mills. In: Presentation at TAPPI engineering, pulping, and environmental conference, Philadelphia, PA, 28–31 Aug 2005

    Google Scholar 

  • Farmer M, Sinquefield S (2003) An external benefits study of black liquor gasification. Final report, Georgia Institute of Technology, 15 June 2003

    Google Scholar 

  • Fitzpatrick SW (1997) US Patent 5,608,105

    Google Scholar 

  • Frisell H (2008) Breakthrough for new Swedish environmental technology. Dagens Ind 33(69):26

    Google Scholar 

  • Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohyd Polym 43:367–374

    Article  CAS  Google Scholar 

  • Grace TM, Timmer WM (1995) A comparison of alternative black liquor recovery technologies. In: Proceedings of the international chemical recovery conference, Toronto, pp B269–B275

    Google Scholar 

  • Griffith WL, Compere AL, Leitten CF, Shaffer JT (2003) Low-cost, lignin-based carbon fiber for transportation applications. In: International SAMPE technical conference, vol 35, pp 142–149

    Google Scholar 

  • Hashimoto T, Hashimoto K (1975) Studies on the utilization of xylan and glucomannan in woods. I. Purification and separation. Yakugaku Zasshi 95(10):1239–1244

    CAS  Google Scholar 

  • Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Julian L, Overend RP (1986) Generalised correlations for the aqueous liquefaction of lignocellulosics. Canad J Chem Eng 64:647–650

    Article  CAS  Google Scholar 

  • Horváth IS, Sjoede A, Alriksson B, Jönsson LJ, Nilvebrant NO (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044

    Article  Google Scholar 

  • Jain RK, Sjostedt M, Glasser WG (2000) Thermoplastic xylan derivatives with propylene oxide. Cellulose 7(4):319–336

    Article  CAS  Google Scholar 

  • Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920

    Article  CAS  Google Scholar 

  • Katofsky R, Consonni S, Larson ED (2003) A cost-benefit analysis of black liquor gasification combined cycle systems. In: Proceedings of the TAPPI fall technical conference: engineering, pulping & PCE&I, Chicago, p 22

    Google Scholar 

  • Kignell JE (1989) Process for chemicals and energy recovery from waste liquors. US Patent 4,808,264

    Google Scholar 

  • Kim KH (2005) Two-stage dilute acid-catalyzed hydrolytic conversion of softwood sawdust into sugars fermentable by ethanologenic microorganisms. J Sci Food Agric 85(14):2461–2467

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  Google Scholar 

  • Kubikova J, Zemann A, Krkoska P, Bobleter O (1996) Hydrothermal pretreatment of wheat straw for the production of pulp and paper. Tappi J 79:163–169

    CAS  Google Scholar 

  • Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005a) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409

    Article  CAS  Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005b) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5(10):925–934

    Article  CAS  Google Scholar 

  • Larsen E, Kreutz T, Consonni S (1998) Performance and preliminary economics of black liquor gasification combined cycles for a range of Kraft pulp mill sizes. In: International chemical recovery conference, Tampa, FL, 1–4 June 1998, vol 2, pp 675–692

    Google Scholar 

  • Larsen E, Consonni S, Katofsky R (2003) A cost-benefit assessment of biomass gasification power generation in the pulp and paper industry. Final report, Princeton Environmental Institute, 8 Oct 2003

    Google Scholar 

  • Larson GW, McDonald ED, Yang W, Frederick WJ, Iisa K, Kreutz TG, Malcolm EW, Brown CA (2000) A cost-benefit assessment of BLGCC technology. Tappi J 83(6):1–15

    Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microbiol Technol 24(3/4):151–159

    Article  CAS  Google Scholar 

  • Lazzaroni MJ, Bush D, Brown JS, Eckert CA (2005) High pressure vapor and liquid equilibria of some carbon dioxide and organic binary systems. J Chem Eng Data 50(1):60–65

    Article  CAS  Google Scholar 

  • Lennholm B (2007) Lignin from the pulp mills’ black liquor: new biofuel with promising potential, Nord. Papperstidn. no. 6, June, p 16

    Google Scholar 

  • Lesutis HP, Gläser R, Griffith K, Liotta CL, Eckert CA (2001) Near critical water: a benign medium for catalytic reactions. Ind Eng Chem Res 40:6063–6067

    Article  Google Scholar 

  • Li X, Simonsen J, Li K (2004) Wood dissolution and the regeneration of its components using ionic liquids. In: 227th American chemical society national meeting abstracts, Anaheim, CA

    Google Scholar 

  • Lindblom M (2003) An overview of Chemrec process concepts. In: 6th international colloquium on black liquor combustion and gasification, Park City, Utah, 13–16 May 2003

    Google Scholar 

  • Lindblom M (2006) Chemrec pressurized black liquor gasification – status and future plans. In: 7th international colloquium on black liquor combustion and gasification, Jyväskylä, Finland, 31 July to 2 Aug 2006

    Google Scholar 

  • Lora JH, Wayman M (1978) Delignification of hardwoods by autohydrolysis and extraction. Tappi J 61:47–50

    CAS  Google Scholar 

  • Lu J, Lazzaroni MJ, Hallett JP, Bommarius AS, Liotta CL, Eckert CA (2004) Tunable solvents for homogeneous catalyst recycle. Ind Eng Chem Res 43(7):1586–1590

    Article  CAS  Google Scholar 

  • Lundqvist J, Jacobs A, Palm M, Zacchi G, Dahlman O, Stålbrand H (2002) Characterization of galactoglucomannan extracted from spruce (picea abies) by heat-fractionation at different conditions. Carbohyd Polym 51(2):203–211

    Article  Google Scholar 

  • Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 121–124:765–777

    Article  Google Scholar 

  • Mansour MN, Steedman WG, Durai-Swamy K, Kazares RE, Raman TV (1992) Chemical and energy recovery from black liquor by steam reforming. In: International chemical recovery conference, Seattle, WA, 7–11 June 1992

    Google Scholar 

  • Mansour MN, Durai-Swamy K, Aghamohammadi B (1993) Pulsed combustion process for black liquor gasification. Second Annual Report U.S. DOE Report DOE/CE/40893-T2 (DE94002668)

    Google Scholar 

  • Mansour MN, Durai-Swamy K, Warren DW (1997) Endothermic spent liquor recovery process. US Patent 5,637,192

    Google Scholar 

  • Martin N, Anglani N, Einstein D, Khrushch M, Worrell E, Price, LK (2000) Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry. Report, Ernest O. Lawrence Berkeley National Laboratory, July 2000

    Google Scholar 

  • Mckeough P (2003) Evaluation of potential improvements to BLG technology. In: Colloquium of black liquor combustion and gasification, Park City, Utah, p 12

    Google Scholar 

  • Middleton T (2006) Steam reforming technology at the Norampac Trenton mil. In: Presentation at IEA meeting, Annex XV black liquor gasification, Washington, NC, 20–22 Feb 2006

    Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microbiol Technol 36(2–3):294–300

    Article  CAS  Google Scholar 

  • Moens L, Khan N (2003) Application of room-temperature ionic liquids to the chemical processing of biomass-derived feedstocks. NATO Science Series, II. Math Phys Chem 92:157–171

    CAS  Google Scholar 

  • Molin U, Teder A (2002) Importance of cellulose/hemicellulose-ratio for pulp strength. Nord Pulp Pap Res 17(1):14–19, 28

    Google Scholar 

  • Montréal Workshop on Bio-refineries (2005) Capturing Canada’s natural advantage, Montréal, QC, 21 Nov 2005

    Google Scholar 

  • Neumann M (2008) New uses for lignin in the biorefinery of the future. Nord Papp Mass 1:42–43

    Google Scholar 

  • Newport DG, Rockvam L, Rowbotton R (2004) Black liquor steam reformer start-up at Norainpac. In: Proceedings of TAPPI international chemical recovery conference, South Carolina

    Google Scholar 

  • Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    Article  Google Scholar 

  • Nilsson LJ, Larson ED, Gilbreath KR, Gupta A (1995) Energy efficiency and the pulp and paper industry. ACEEE, Washington

    Google Scholar 

  • Niu W, Molefe MN, Frost JW (2003) Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc 125:12998

    Article  CAS  Google Scholar 

  • Nolen SA, Liotta CL, Eckert CA, Gläser R (2003) The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed organic synthesis. Green Chem 5:663–669

    Article  CAS  Google Scholar 

  • Öhman F (2006) Precipitation and separation of lignin from kraft black liquor. PhD thesis. Chalmers Technical University, Gothenburg, Sweden

    Google Scholar 

  • Page DH, Seth RS (1985) Strength and chemical composition of wood pulp fibres. In: The 8th fundamental research symposium, Oxford, UK, pp 77–91

    Google Scholar 

  • Palm M, Zacchi G (2003) Extraction of hemicellulosic oligosaccharides from spruce using microwave oven or steam treatment. Biomacromolecules 4(3):617–623

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74(1):17–24

    Article  CAS  Google Scholar 

  • Persson P, Larsson S, Jönsson LJ, Nilvebrant NO, Sivik B, Munteanu F, Thörneby L, Gorton L (2002) Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng 79(6):694–700

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2(1):55–65

    Article  CAS  Google Scholar 

  • Rockvam LN (2001) Black liquor steam reforming and recovery commercialization. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Rodden G (2007) Lignoboost is proving its worth: Wermland paper is in the forefront of biofuel development thanks to an agreement with STFI-Packforsk. Pulp Pap Int 49(8):26–28

    Google Scholar 

  • Schönberg C, Oksanen T, Suurnäkki A, Kettunen H, Buchert J (2001) The importance of xylan for the strength properties of spruce kraft pulp fibres. Holzforschung 55(6):639–644

    Article  Google Scholar 

  • Scott RW (1989) Influence of cations and borate on the alkali extraction of xylan and glucomannan from pine pulps. J Appl Polym Sci 38(5):907–914

    Article  CAS  Google Scholar 

  • Senthilkumar V, Gunasekaran P (2005) Bioethanol production from cellulosic substrates: engineered bacteria and process integration challenges. J Sci Ind Res 64(11):845–853

    CAS  Google Scholar 

  • Sreenath HK, Jeffries TW (1999) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72(3):253–260

    Article  Google Scholar 

  • Sricharoenchaikul V (2001) Fate of carbon-containing compounds from gasification of kraft black liquor with subsequent catalytic conditioning of condensable organics. PhD Dissertation, Georgia Institute of Technology, 2001

    Google Scholar 

  • Stigsson L (1998) Chemrec black liquor gasification. In: International chemical recovery conference, Tampa, FL, 1–4 June 1998

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36(11):4659–4665

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000a) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(6):701–708

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000b) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90(4):374–380

    CAS  Google Scholar 

  • Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmentally preferable uses for biomass resources – stage 1 report: identification of feedstock-to-product threads. Report, Envirochem Services Inc., North Vancouver

    Google Scholar 

  • Thorp B (2005a) Transition of mills to biorefinery model creates new profit streams. Pulp Paper 79(11):35–39

    CAS  Google Scholar 

  • Thorp B (2005b) Biorefinery offers industry leaders business model for major change. Pulp Pap 79(11):35–39

    CAS  Google Scholar 

  • Thorp B, Raymond D (2005) Forest biorefinery could open door to bright future for P&P industry. PaperAge 120(7):16–18

    Google Scholar 

  • Thorp BA, Thorp BA, Murdock-Thorp LD (2008) A compelling case for integrated biorefineries. http://www.epoverviews.com/oca/Compellingcaseforbiorefineries.pdf. Accessed on Dec. 2010

  • Tolan JS (2003) Conversion of cellulosic biomass to ethanol using enzymatic hydrolysis. In: 226th American chemical society national meeting abstracts, New York

    Google Scholar 

  • Tucker P (2002) Changing the balance of power. Solutions 85(2):34–38

    CAS  Google Scholar 

  • Vakkilainen EK, Kankkonen S, Suutela J (2008) Advanced efficiency options: increasing electricity generating potential from pulp mills. Pulp Pap Canada 109(4):14–18

    CAS  Google Scholar 

  • van Heiningen A (2006) Converting a kraft pulp mill into an integrated biorefinery. Pulp Pap Canada 107(6):T141–T146

    Google Scholar 

  • Wai CM, Gopalan AS, Jacobs HK (2003) An introduction to separations and processes using supercritical carbon dioxide. In: ACS symposium series, 860 (supercritical carbon dioxide), American Chemical Society, pp 2–8

    Google Scholar 

  • Wallmo H, Theliander H (2007) The Lignoboost process: comments on key-operations. In: International chemical recovery conference: efficiency and energy management, Quebec City, QC, 29 May to 1 June, pp 333–335

    Google Scholar 

  • Warnqvist B, Delin L, Theliander H, Nohlgren I (2000) Teknisk ekonomisk utvärdering avsvartlutförgasningsprocesser. Värmeforsk service AB, Stockholm

    Google Scholar 

  • Werpy T, Petersen G (2004) Top value-added chemicals from biomass, volume I: results of screening for potential candidates from sugars and synthesis gas. Pacific NorthProduct west National Laboratory, Aug 2004 http://www.eere.energy.gov/biomass/pdfs/35523.pdf

  • Whitty K, Baxter L (2001) State of the art in black liquor gasification technology. In: Joint international combustion symposium, Kauai, Hawaii, 9–12 Sep 2001

    Google Scholar 

  • Whitty K, Nilsson A (2001) Experience from a high temperature, pressurized black liquor gasification pilot plant. In: International chemical recovery conference, Whistler, Canada, 11–14 June 2001

    Google Scholar 

  • Whitty K, Verrill CL (2004) A historical look at the development of alternative black liquor recovery technologies and the evolution of black liquor gasifier designs. In: International chemical recovery conference, Charleston, SC, 6–10 June 2004

    Google Scholar 

  • Wising U, Stuart PR (2006) Identifying the Canadian forest biorefinery. Pulp Pap Canada 107(6):25–30

    CAS  Google Scholar 

  • Wright JD, Power AJ (1987) Comparative technical evaluation of acid hydrolysis processes for conversion of cellulose to alcohol. Energy Biomass Wastes 10:949–971

    Google Scholar 

  • Wyatt VT, Bush D, Lu J, Hallett JP, Liotta CL, Eckert CA (2005) Determination of solvatochromic solubility parameters for the characterization of gas-expanded liquids. J Supercrit Fluids 36(1):16–22

    Article  CAS  Google Scholar 

  • Wyman CE, Goodman BJ (1993) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39–40:41–59

    Article  Google Scholar 

  • Yanagisawa M, Shibata I, Isogai A (2005) SEC-MALLS analysis of softwood kraft pulp using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose 12(2):151–158

    Article  CAS  Google Scholar 

  • Yang CQ, Lu Y (2000) Text Res J 70(4):359–362

    Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1–2):17–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Bajpai .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bajpai, P. (2012). Integrated Forest Biorefinery. In: Biotechnology for Pulp and Paper Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1409-4_19

Download citation

Publish with us

Policies and ethics