Skip to main content

Temperate Azonal Vegetation

  • Chapter
  • First Online:
Global Vegetation

Abstract

The common feature of the azonal vegetation of the warm (subtropical), cool (nemoral) and cold-temperate (boreal) ecozones is the complete absence of frost-sensitive woody plants. Cold winters prevent tree growth on wet and salt-affected sites, leaving wetlands such as mires, marshlands and coasts predominantly treeless. These habitats are covered by grasslands dominated by Cyperaceae. Only coastal areas, lake shores, parts of floodplains, some peatlands and rocky outcrops are forested. The vegetation consists of a highly specialized flora capable of coping with excess salt and regular flooding (salt marshes), sand intrusion and salt spray (coastal dunes), or nutrient deficiency and wetness (mires). Furthermore, the peat-forming bogs and fens sequester major amounts of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, P. (1990). Saltmarsh ecology (461 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Adam, P. (1994). Australian rainforests (Oxford biogeography series no. 6) (308 pp). Oxford: Oxford University Press.

    Google Scholar 

  • An, S., Li, H., Guan, B., Zhou, C., Wang, Z., Deng, Z., Zhi, Y., Liu, Y., Xu, C., Fang, S., Jiang, J., & Li, H. (2007). China’s natural wetlands: Past problems, current status, and future challenges. Ambio, 36, 335–342.

    CAS  PubMed  Google Scholar 

  • Arroyo, M. T. K., Pliscoff, P., Mihoc, M., & Arroyo-Kalin, M. (2005). The Magellanic moorland. In L. H. Fraser & P. A. Keddy (Eds.), The World’s largest wetlands. Ecology and conservation (pp. 424–445). Cambridge: Cambridge University Press.

    Google Scholar 

  • Averdieck, F.-R., Hayen, H., Heathwaite, A. L., & Willkomm, H. (1993). The chronology of mire development. In A. L. Heathwaite & K. Göttlich (Eds.), Mires – Process, exploitation and conservation (pp. 123–170). Chichester: Wiley.

    Google Scholar 

  • Beeftink, W. G. (1977). Salt marshes. In R. S. K. Barnes (Ed.), The coastline (pp. 93–121). New York: Wiley.

    Google Scholar 

  • Behling, H., Pillar, V. D., Orlóci, L., & Bauermann, S. G. (2004). Late Quartenary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 277–297.

    Google Scholar 

  • Botch, M., & Masing, K. I. (1983). Mire ecosystems of the U.S.S.R. In A. J. P. Gore (Ed.), Mires: Swamp, bog, fen and moor. Ecosystems of the world 4B (pp. 95–152).

    Google Scholar 

  • Brinson, M. M. (1990). Riverine forests. In A. E. Lugo, M. M. Brinson, & S. Brown (Eds.), Forested wetlands. Ecosystems of the world (Vol. 15, pp. 87–141).

    Google Scholar 

  • Britton, R. H., & Podlejski, V. D. (1981). Inventory and classification of the wetlands of the Camargue (France). Aquatic Botany, 10, 195–228.

    Google Scholar 

  • Budke, J. C., Jarenkow, J. A., & Oliveira-Filho, A. T. (2008). Tree community features of two stands of riverine forests under different flooding regimes in Southern Brazil. Flora, 203, 162–174.

    Google Scholar 

  • Christensen, N. L. (2000). Vegetation of the southeaster coastal plain. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 397–448). Cambridge: Cambridge University Press.

    Google Scholar 

  • Clarke, P. J. (1994). Coastal dune vegetation. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 501–521). Melbourne: Cambridge University Press.

    Google Scholar 

  • Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States. FWS/OBS-79/31 (103 pp). Washington, DC: US Fish and Wildlife Service.

    Google Scholar 

  • Dierssen, K., Eischeid, I., Härdtle, W., Hagge, H., Kiehl, L., Körber, P., LütkeTwenhöven, F., Neuhaus, F., & Walter, J. (1991). Geobotanische Untersuchungen an den Küsten Schleswig-Holsteins. Berichte der Reinhold Tüxen-Gesellschaft, 3, 129–155.

    Google Scholar 

  • Dorneles, L. P. P., & Waechter, J. L. (2004). Fitosociologia do componente arbóreo na floresta turfosa do Parque Nacional da Lagoa do Peixe, Rio Grande do Sul, Brasil. Acta Botânica Brasileira, 18, 815–824.

    Google Scholar 

  • Duncan, R. R., & Carrow, R. N. (1999). Seashore Paspalum. The environmental turfgrass (304 pp). New Jersey: Wiley.

    Google Scholar 

  • Dynesius, M., & Nisson, C. (1994). Fragmentation and flow regulation of river systems on the northern third of the world. Science, 266, 753–762.

    CAS  PubMed  Google Scholar 

  • Ellenberg, H. (1963). Vegetation Mitteleuropas mit den Alpen (1st ed., 943 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Eskuche, U. (1973). Pflanzengesellschaften der Küstendünen von Argentinien, Uruguay und Südbrasilien. Vegetatio, 28, 201–250.

    Google Scholar 

  • Fraser, L. H., & Keddy, P. A. (Eds.). (2005). The World’s largest wetlands. Ecology and conservation (488 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Genaust, H. (1996). Etymologisches Wörterbuch der botanischen Pflanzennamen (3rd ed., 701 pp). Hamburg: Nikol Verlagsgesellschaft.

    Google Scholar 

  • Grootjans, A., Iturraspe, R., Lanting, A., Fritz, C., & Joosten, H. (2010). Ecohydrological features of some contrasting mires in Tierra del Fuego, Argentina. Mires and Peat, 6, 1–15.

    Google Scholar 

  • Grosse, W., Büchel, H. B., & Lattermann, S. (1998). Root aeration in wetland trees and its ecophysiological significance. In A. D. Laderman (Ed.), Coastally restricted forests (pp. 293–305). New York: Oxford University Press.

    Google Scholar 

  • Haacks, M. (2003). Die Küstenvegetation von Neuseeland. Mitteilungen der Geographischen Gesellschaft in Hamburg, 95, 269 pp.

    Google Scholar 

  • Hilbig, W. (1995). The vegetation of Mongolia (258 pp). Amsterdam: SPB Academic Publishing BV.

    Google Scholar 

  • Hofstetter, R. H. (1983). Wetlands in the United States. In A. J. P. Gore (Ed.), Mires: Swamp, bog, fen and moor (Ecosystems of the world 4B) (pp. 201–244).

    Google Scholar 

  • Holstein, G. (1984). California riparian forests: Deciduous islands in an evergreen sea. In R. E. Warner & K. M. Hendrix (Eds.), California riparian systems: Ecology, conservation, and productive management (pp. 2–22). Berkeley: University of California Press.

    Google Scholar 

  • Ingram, H. A. P. (1983). Hydrology. In A. J. P. Gore (Ed.), Mires: Swamp, bog, fen and moor (General studies. Ecosystems of the world 4A) (pp. 67–158).

    Google Scholar 

  • Ivanov, K. E. (1981). Water movements in Mirelands (276 pp). London: Academic.

    Google Scholar 

  • Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands – Background and principles including a framework for decision-making. International mire conservation group and international peat society (304 pp). Finland: Saarijärvi.

    Google Scholar 

  • Joosten, H., Tanneberger, F., & Moen, A. (Eds.). (2017). Mires and peatlands of Europe: Status, distribution and conservation (730 pp). Stuttgart: Schweizerbart Science Publishers.

    Google Scholar 

  • Junk, W., Bayley, P. B., & Sparks, R. F. (1989). The flood pulse concept in river-floodplain systems. In D. P. Dodge (Ed.), Proceedings of the international large river symposium (Canadian special publication of fisheries and aquatic sciences) (Vol. 106, pp. 110–127).

    Google Scholar 

  • Kadereit, G., Ball, P., Beer, S., Mucina, L., Sokoloff, D., Teege, P., Yaprak, A. E., & Freitag, H. (2007). A taxonomic nightmare comes true: Phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon, 56, 1143–1170.

    Google Scholar 

  • Karrenberg, S., Edwards, P. J., & Kollmann, J. (2002). The life history of Salicaceae living in the active zone of flood plains. Freshwater Biology, 47, 733–748.

    Google Scholar 

  • Klötzli, F., Dietl, W., Marti, K., Schubiger-Bosshard, C., & Walther, G.-R. (2010). Vegetation Europas. Das Offenland im vegetationskundlich-ökologischen Überblick unter besonderer Berücksichtigung der Schweiz. (1190 pp). Hep, Bern: Schweiz.

    Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln. G. Fischer, Stuttgart, 373 pp.

    Google Scholar 

  • Kohler, A. (1970). Geobotanische Untersuchungen an Küstendünen Chiles zwischen 27 und 42 Grad südl. Breite. Botanische Jahrbücher, 90, 55–200.

    Google Scholar 

  • Kollmann, J. (2019). Fließgewässer. In J. Kollmann, A. Kirmer, N. Hölzel, S. Tischew, & K. Kiehl (Eds.), Renaturierungsökologie (pp. 125–170). Berlin: Springer Spektrum.

    Google Scholar 

  • Kvet, J. (1971). Growth analysis approach to the production ecology of reed-swamp communities. Hidrobiologia, 12, 15–40.

    Google Scholar 

  • Lapshina, E. D. (2006). Die Vegetation der Moore in der Obaue im Süden der Waldzone Westsibiriens. Phytocoenologia, 36, 421–463.

    Google Scholar 

  • Larkum, A. W. D., Orth, R. J., & Duarte, C. M. (Eds.). (2006). Seagrasses: Biology, ecology and conservation (692 pp). Dordrecht: Springer.

    Google Scholar 

  • Leuschner, C., & Ellenberg, H. (2017). Ecology of central European non-forest vegetation: Coastal to alpine, Natural to man-made habitats (1093 pp). Springer, Dordrecht.

    Google Scholar 

  • Li, C., Zhong, Z., Geng, Y., & Schneider, R. (2010). Comparative studies on physiological and biochemical adaption of Taxodium distichum und Taxodium ascendens seedlings to different soil water regimes. Plant and Soil, 329, 481–494.

    CAS  Google Scholar 

  • Lubke, R. A., Avis, A. M., Steinke, T. D., & Boucher, C. (1997). Coastal vegetation. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of southern Africa (pp. 300–321). Cape Town: Cambridge University Press.

    Google Scholar 

  • Lütt, S. (1992). Produktionsbiologische Untersuchungen zur Sukzession der Torfstichvegetation in Schleswig-Holstein. Mitteilungen der Arbeitsgemeinschaft Geobotanik von Schleswig-Holstein und Hamburg, 43, 250 pp.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Malloch, A. J. C. (1997). Influence of salt spray on dry coastal vegetation. In E. Van der Maarel (Ed.), Dry coastal ecosystems. General aspects. Ecosystems of the world (Vol. 2C, pp. 411–420).

    Google Scholar 

  • Malmer, N. (1975). Development of bog mires. In A. D. Hasler (Ed.), Coupling of land and water systems. Ecological studies (Vol. 10, pp. 85–92).

    Google Scholar 

  • Martínez, M. L., & Psuty, N. P. (Eds.). (2004). Coastal dunes. Ecology and conservation. Ecological Studies, 171, 386 pp.

    Google Scholar 

  • Masing, V., Botch, M., & Läänelaid, A. (2010). Mires of the former Soviet Union. Wetlands Ecology and Management, 18, 397–433.

    Google Scholar 

  • Mendelssohn, I. A., & McKee, K. L. (2000). Saltmarshes and mangroves. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 501–536). Cambridge: Cambridgte University Press.

    Google Scholar 

  • Middleton, B. A. (2009). Effects of hurricane Katrina on the forest structure of Taxodium distichum swamps of the Gulf Coast, USA. Wetlands, 29, 80–87.

    Google Scholar 

  • Mitch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed., p. 920). New York: John Wiley & Sons.

    Google Scholar 

  • Mitsch, W. J., Gosselink, J. G., Anderson, C. J., & Zhang, L. (2009). Wetland ecosystems (295 pp). Hoboken: Wiley.

    Google Scholar 

  • Montague, C. L., & Wiegert, R. G. (1990). Salt marshes. In R. L. Myers & J. J. Ewel (Eds.), Ecosystems of Florida (pp. 481–516). Orlando: University of Central Florida Press.

    Google Scholar 

  • Moore, P. D., & Bellamy, D. J. (1974). Peatlands (221 pp). New York: Springer.

    Google Scholar 

  • Nehring, S., & Hesse, K.-J. (2008). Invasive alien plants in marine protected areas: The Spartina anglica affair in the European Wadden Sea. Biological Invasions, 10, 937–950.

    Google Scholar 

  • Neiff, J. J. (2001). Humedales de la Argentina: sinopsis, problemas y perspectivas futuras. In A. F. En Cirelli (Ed.), El Agua en Iberoamérica. Funciones de los humedales, calidad de vida y agua segura (pp. 83–112). Publ. CYTED.

    Google Scholar 

  • Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308, 405–408.

    CAS  PubMed  Google Scholar 

  • Numata, M. (1974). The Flora and vegetation of Japan (294 pp). Tokyo: Kodansha.

    Google Scholar 

  • Palmer, M. A., Bernhardt, E. S., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C. N., Follstad Shah, J., Galat, D. L., Loss, S. G., Goodwin, P., Hart, D. D., Hasset, B., Jenkinson, R., Kondolf, G. M., Lave, R., Meyer, J. L., O’Donnel, T. K., Pagano, L., & Sudduth, E. (2005). Standards for ecologically successful river restoration. Journal of Applied Ecology, 42, 208–217.

    Google Scholar 

  • Pfadenhauer, J. (1979). Die Ökologie einiger verbreiteter Dünenpflanzen in Rio Grande do Sul (Südbrasilien) im Hinblick auf ihre Eignung für den Dünenbau. Botanische Jahrbücher, 100, 414–436.

    Google Scholar 

  • Pfadenhauer, J., & Castro Boechat, S. (1981). Vegetation und Ökologie eines Sphagnum-Moores in Südbrasilien. Plant Ecology, 44, 177–187.

    Google Scholar 

  • Pisano, E. (1983). The Magellanic tundra complex. In A. J. P. Gore (Ed.), Mires: Swamp, bog (Fen and moor. Ecosystems of the world) (Vol. 4B, pp. 295–329).

    Google Scholar 

  • Racey, G. D., Harris, A. G., Jeglum, J. K., Foster, R. F., & Wickware, G. M. (1996). Terrestrial and wetland ecosites of northwestern Ontario. NWST Fieldguide, FG-02, 1–94.

    Google Scholar 

  • Redondo-Gómez, S., Mateos-Naranjo, E., Figueroa, M. E., & Davy, A. J. (2010). Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biology, 12, 79–87.

    PubMed  Google Scholar 

  • Richardson, C. J. (2000). Freshwater wetlands. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 449–499). Cambridge: Cambridge University Press.

    Google Scholar 

  • Richardson, C. J. (Ed.). (2008). The Everglades experiment. Lessons for ecosystem restoration. Ecological Studies, 201, 698 pp.

    Google Scholar 

  • Richardson, C. J., & Huvane, J. K. (2008). Ecological status of the Everglades: Environmental and human factors that control the peatland complex on the landscape. In C. J. Richardson (Ed.), The Everglades experiments (Lessons for ecosystem restoration. Ecological studies) (Vol. 201, pp. 13–58).

    Google Scholar 

  • Rydin, H., & Jeglum, J. (2006). The biology of peatlands (343 pp). New York: Oxford University Press.

    Google Scholar 

  • Schimper, A. W. F. (1898). Pflanzen-Geographie auf physiologischer Grundlage. Jena: G. Fischer.

    Google Scholar 

  • Schumann, M. & Joosten, H.. (2008). Global peatland restoration. Manual. Version February 2008. http://www.imcg.net/media/download_gallery/books/gprm_01.pdf. Accessed July 2019.

  • Schütt, P., Weisgerber, H., Schuck, H. J., Lang, K. J., Stimm, B., & Roloff, A. (Eds.). (2004). Lexikon der Nadelbäume (639 pp). Hamburg: Nicol-Verlagsgesellschaft.

    Google Scholar 

  • Shaffer, G. P., Gosselink, J. G., & Hoeppner, S. S. (2005). The Mississippi River alluvial plain. In L. H. Fraser & P. A. Keddy (Eds.), The World’s largest wetlands. Ecology and conservation (pp. 272–315). Cambridge: Cambridge University Press.

    Google Scholar 

  • Succow, M., & Jeschke, L. (1986). Moore in der Landschaft (268 pp). Frankfurt: Harri Deutsch.

    Google Scholar 

  • Succow, M., & Joosten, H. (Eds.). (2001). Landschaftsökologische Moorkunde (2nd ed., 622 pp). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Tanneberger, F., Tegetmeyer, C., Busse, S., Barthelmes, A., et al. (2017). The peatland map of Europe. Mires and Peat, 19, 1–17.

    Google Scholar 

  • Thevs, N., Zerbe, S., Peper, J., & Succow, M. (2008). Vegetation and vegetation dynamics in the Tarim River floodplain of continental-arid Xinjiang, NW China. Phytocoenologia, 38, 65–84.

    Google Scholar 

  • Thompson, J. D. (1991). The biology of an invasive plant. What makes Spartina anglica so successful? Bio Science, 41, 393–401.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1993a). Dry coastal ecosystems. Polar regions and Europe. Ecosystems of the world 2A (600 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1993b). Dry coastal ecosystems. Regional studies. Ecosystems of the world 2B (616 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Van der Maarel, E. (Ed.). (1997). Dry coastal ecosystems. General aspects. Ecosystems of the world 2C (713 pp). Amsterdam: Elsevier.

    Google Scholar 

  • Van der Valk, A. G. (2005). The prairie potholes of North America. In L. H. Fraser & P. A. Keddy (Eds.), The World’s largest wetlands. Ecology and conservation (pp. 393–423). Cambridge: Cambridge University Press.

    Google Scholar 

  • Verhoeven, J. T. A., & Liefveld, W. M. (1997). The ecological significance of organochemical compounds in Sphagnum. Acta Botanica Neerlandica, 46, 117–130.

    CAS  Google Scholar 

  • Wachowiak, W., Boratýnska, K., & Cavers, S. (2013). Geographical patterns of nucleotide diversity and population differentiation in there closely related European pine species in the Pinus mugo complex. Botanical Journal of the Linnean Society, 172, 225–238.

    Google Scholar 

  • Walter, H. (1968). Die Vegetation der Erde in öko-physiologischer Betrachtung. II: Die gemäßigten und arktischen Zonen (1001 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Walter, H., & Box, E. O. (1983). Middle Asian deserts. In N. E. West (Ed.), Temperate deserts and semi-deserts (Ecosystem of the world) (Vol. 5, pp. 79–104).

    Google Scholar 

  • Wright, H. E., Jr., Coffin, B. A., & Aaseng, N. E. (Eds.). (1992). The patterned peatlands of Minnesota (327 pp). Minneapolis: University of Minnesota Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Temperate Azonal Vegetation. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_9

Download citation

Publish with us

Policies and ethics