Skip to main content

Latitudinal Trends in Scorpion Assemblages of Brazilian Atlantic Forest: Do the Rapoport’s and Bergmann’s Rules Apply?

  • Chapter
  • First Online:
Neotropical Gradients and Their Analysis

Abstract

By testing some of the most known ecogeographic rules, such as Rapoport’ rule, and Bergmann’s rule, we expand our knowledge on the spatial patterns governing the distribution of biodiversity across scales. This knowledge may then be translated into effective measures aimed to preserve endangered species and environments. In this chapter, we investigate how suitable are the Bergmann’s rule, and the Rapoport’s effect in explaining latitudinal trends in scorpion diversity in the Brazilian Atlantic Forest – one of the global biodiversity hotspots. To this end, we compiled occurrence data, and body size information of Atlantic Forest scorpion from public repositories, and scientific literature. A total of 2,429 occurrences for 28 species grouped in two families (Bothriuridae, and Buthidae) were obtained. We observed a positive and significant correlation between latitude and both species’ distribution ranges, and focal species richness. On the other hand, we did not find any apparent latitudinal pattern in the geographical distribution of body size in these animals. In summary, this study proposes that 1) scorpion richness in the Atlantic Forest does not adhere to the Rapoport’s effect, being more similar to the assumptions of the Inverse Rapoport’ rule, and latitudinal diversity gradient hypothesis; and 2) a comprehensive pattern in the spatial distribution of scorpion body sizes in the Atlantic Forest seems to be absent, or at least, its complexity cannot be explained by well-known ecogeographical rules such as the Bergmann’s rule. The potential associations between such biodiversity patterns and the biogeographical backgrounds of the Atlantic Forest are discussed. We strongly believe that what was highlighted here will improve our overall understanding concerning the spatial drivers of species richness in the Atlantic Forest, which may help future studies and conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta LE, Candido DM, Buckup EH, Brescovit AD (2008) Description of Zabius gaucho (Scorpiones, Buthidae), a new species from southern Brazil, with an update about the generic diagnosis. J Arachnol 36:491–501

    Google Scholar 

  • Albuquerque FS, Castro-Díez P, Rueda M, Hawkins BA, Rodríguez MÁ (2011) Relationship of climate, residence time and biogeographical origin with the range sizes and species richness patterns of exotic plants in Great Britain. Plant Ecol 212:1901

    Google Scholar 

  • Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9:947–954

    PubMed  Google Scholar 

  • Almeida-Neto M, Machado G, Pinto-da-Rocha R, Giaretta AA (2006) Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport’s rule? J Biogeogr 33:361–375

    Google Scholar 

  • Álvarez D, Gómez D, Martínez J, Mendoza H, Ruiz S (2013) Microhabitat use by scorpions in a tropical dry forest relict of the Colombian Caribbean. Revista Colombiana de Entomologia 39:301–304

    Google Scholar 

  • Amado TF, Moura TA, Riul P, Lira AFA, Badillo-Montaño R, Martinez PA (2021) Vulnerable áreas to acidentes with scorpions in Brazil. Tropical Med Int Health 26:591–601

    Google Scholar 

  • Aragon P, Fitze PS (2014) Geographical and temporal body size variation in a reptile: roles of sex, ecology, phylogeny and ecology structured in phylogeny. PLoS One 9:e104026

    PubMed  PubMed Central  Google Scholar 

  • Bergmann C (1847) Ueber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gottinger Studien 1:595–708

    Google Scholar 

  • Bertani R, Bonini RK, Toda MM, Isa LS, Figueiredo JVA, Santos MR, Ferraz SC (2018) Alien scorpions in the municipality of São Paulo, Brazil: evidence of successful establishment of Tityus stigmurus (Thorell, 1876) and first records of Broteochactas parvulus Pocock, 1897, and Jaguajir rochae (Borelli, 1910). Bioinvasion Rec 7:89–94

    Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum. Integr Comp Biol 44:413–424

    CAS  PubMed  Google Scholar 

  • Böhm M, Kemp R, Williams R, Davidson AD, Garcia A, McMillan KM, Bramhall HR, Collen B (2017) Rapoport’s rule and determinants of species range in snakes. Divers Distrib 23:1472–1481

    Google Scholar 

  • Brazil TK, Porto TJ (2011) Os escorpiões. Edufba, Salvador

    Google Scholar 

  • Brazil TK, Lira-da-Silva RM, Porto TJ, Amorim AMD, Silva TFD (2009) Escorpiões de importância médica do estado da Bahia, Brasil. Gazeta Médica da Bahia 79:38–72

    Google Scholar 

  • Brito G, Borges A (2015) A checklist of the scorpions of Ecuador (Arachnida: Scorpiones), with notes on the distribution and medical significance of some species. J Venom Anim Toxins Incl Trop Dis 21:23–40

    PubMed  PubMed Central  Google Scholar 

  • Brocklehurst N, Day MO, Rubidge BS, Fröbisch J (2017) Olson’s extinction and the latitudinal biodiversity gradient of tetrapods in the Permian. Proc R Soc B Biol Sci 284:20170231

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22

    Google Scholar 

  • Câmara IG (2003) Brief history of conservation in the Atlantic Forest. In: Galindo–Leal C, Câmara IG (eds) The Atlantic forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 31–42

    Google Scholar 

  • Cancello EM, Silva RR, Vasconcellos A, Reis YT, Oliveira LM (2014) Latitudinal variation in termite species richness and abundance along the Brazilian Atlantic Forest hotspot. Biotropica 46:441–450

    Google Scholar 

  • Candido DM, Lucas S, Souza CAR, Diaz D, Lira-da-Silva RM (2005) Uma nova espécie de Tityus C. L. Koch, 1836 (Scorpiones, Buthidae) do estado da Bahia. Brasil Biota Neotropica 5:193–200

    Google Scholar 

  • Cardillo M, Orme CDL, Owens IPF (2005) Testing for latitudinal bias in diversification rates: an example using new world birds. Ecology 86:2278–2287

    Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkwski CR, Bornschein MR, Ribeiro LF, Moritz C (2014) Prediction of phylogeographic endesmism in na environmentally complex biome. Proc R Soc B Biol Sci 281:20141461

    Google Scholar 

  • Carvalho CS, Martello F, Galetti M, Pinto F, Francisco MR, Silveira LF, Galetti PM Jr (2021) Environmental heterogeneity and sampling relevance areas in an Atlantic Forest endemism region. Perspect Ecol Conserv 19:311–318

    Google Scholar 

  • Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    PubMed  Google Scholar 

  • Coddington JA, Colwell RK (2001) Arachnida. In: Levin SC (ed) Encyclopedia of biodiversity. Academic Press, New York, pp 199–218

    Google Scholar 

  • Condit R, Pitman N, Leigh EG Jr (2002) Beta-diversity in tropical forest trees. Science 295:666–669

    CAS  PubMed  Google Scholar 

  • Conservation International (2009) Biodiversity hotspots-resources-maps and GIS data. https://www.conservation.org/priorities/biodiversity-hotspots. Accessed 27 Sept 2021.

  • CRIA (2021) Species link (http://splink.cria.org.br/project?criaLANG=pt). Accessed on 18 Sept 2021

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypothesis of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, London

    Google Scholar 

  • DaSilva MB, Pinto-Da-Rocha R, DeSouza AM (2015) A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic rain forest using harvestmen distribution data. Cladistics 31:692–705

    PubMed  Google Scholar 

  • Dias SC, Candido DM, Brescovit AD (2006) Scorpions from Mata do Buraquinho, João Pessoa, Paraíba, Brazil, with ecological notes on a population of Ananteris mauryi Lourenço (Scorpiones, Buthidae). Revista Brasileira de Zoologia 23:707–710

    Google Scholar 

  • Dionisio-da-Silva W, Lira AFA, Albuquerque CMR (2018) Distinct edge effects and reproductive periods of sympatric litter-dwelling scorpions (Arachnida: Scorpiones) in a Brazilian Atlantic Forest. Zoology 129:17–24

    PubMed  Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142

    PubMed  Google Scholar 

  • Eisenlohr PV, Alves LF, Bernacci LC, Padgurschi MCG, Torres RB, Prata EMB, Santos FAM, Assis MA, Ramos E, Rochelle ALC, Martins FR, Campos MCR, Pedroni F, Sanchez M, Pereira LS, Vieira SA, Gomes JAMA, Tamashiro JY, Scaranello MAS, Caron CJ, Joly CA (2013) Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. Biodiver Conserv 22:2767–2783

    Google Scholar 

  • Entling W, Schmidt-Entling MH, Bacher S, Brandl R, Nentwig W (2010) Body size-climate relationships of European spiders. J Biogeogr 37:477–485

    Google Scholar 

  • Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47:477–496

    Google Scholar 

  • Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392

    Google Scholar 

  • Foerster SÍA, DeSouza AM, Lira AFA (2019) Macroecological approach for scorpions (Arachnida, Scorpiones): β-diversity in Brazilian montane forests. Can J Zool 97:914–921

    Google Scholar 

  • Foerster SÍA, Lira AFA, Almeida CG (2020) Vegetation structure as the main source of variability in scorpion assemblages at small spatial scales and further considerations for the conservation of Caatinga landscapes. Neotrop Biol Conserv 15:533–550

    Google Scholar 

  • Foord SH, Gelebe V, Prendini L (2015) Effects of aspect and altitude on scorpion diversity along an environmental gradient in the Soutpansberg, South Africa. J Arid Environ 113:114–120

    Google Scholar 

  • Fortes RR, Absalão RS (2004) The applicability of Rapoport’s rule to the marine molluscs of the Americas. J Biogeogr 31:1909–1916

    Google Scholar 

  • Galiano ME, Maury EA (1979) Lista de los ejemplares tipicos de Arachnida (Araneae, Opiliones, Scorpiones y Solifugae) depositados en el Museo Argentino de Ciencias Naturales Bernadino Rivadavia. Revista Del Museo Argentino de Ciencias Naturales Bernadino Rivadavia 5:301–334

    Google Scholar 

  • Galindo-Leal C, Câmara IG (2003) The Atlantic forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington

    Google Scholar 

  • Garraffoni AR, Moura FR, Lourenço AP (2017) Areas of endemism in the Atlantic Forest: quantitative biogeography insights from orchid bees (Apidae: Euglossini). Apidologie 48:513–522

    Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    CAS  PubMed  Google Scholar 

  • Gaston KJ (2003) The how and why of biodiversity. Nature 421:900–901

    CAS  PubMed  Google Scholar 

  • GBIF.org (2021) GBIF home page. Disponible at: https://www.gbif.org. 18 Sept 2021

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Google Scholar 

  • Giupponi APL, Vasconcelos EG, Lourenço WR (2009) The genus Ananteris Thorell, 1891 (Scorpiones, Buthidae) in southeast Brazil, with the description of three new species. ZooKeys 13:29–41

    Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052

    PubMed  PubMed Central  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    PubMed  Google Scholar 

  • Holbourn A, Kuhnt W, Lyle M, Schneider L, Romero O, Andersen N (2014) Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42:19–22

    CAS  Google Scholar 

  • Jablonski D, Roy K (2003) Geographical range and speciation in fossil and living molluscs. Proc R Soc B Biol Sci 270:401–406

    Google Scholar 

  • Jeram AJ (1998) Phylogeny, classification and evolution of Silurian and Devonian scorpions. In: Brownell P, Polis GA (eds) Scorpion biology and research. Oxford University Press, Oxford

    Google Scholar 

  • Joly CA, Assis MA, Bernacci LC, Tamashiro JY, Campos MCR, Gomes JAMA, Lacerda MS, Santos FAM, Pedroni F, Pereira LS, Padgurschi MCG, Prata EMB, Ramos E, Torres RB, Rochelle A, Martins FR, Alves LF, Vieira SA, Martinelli LA, Camargo PB, Aidar MPM, Eisenlohr PV, Simões E, Villani JP, Belinello R (2012) Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotrop 12:123–145

    Google Scholar 

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473

    PubMed  Google Scholar 

  • Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia 140:407–413

    PubMed  Google Scholar 

  • Kinlock NL, Prowant L, Herstoff EM, Foley CM, Akin-Fajiye M, Bender N, Umarani M, Ryu HY, Sen B, Gurevitch J (2018) Explaining global variation in the latitudinal diversity gradient: meta-analysis confirms known patterns and uncovers new ones. Glob Ecol Biogeogr 27:125–141

    Google Scholar 

  • Kjelleswig-Waering EN (1986) A restudy of the fossil Scorpionida of the world. Paleontol Res 55:1–287

    Google Scholar 

  • Koch NM, Ceccarelli FS, Ojanguren-Affilastro AA, Ramirez MJ (2017) Discrete and morphometric traits reveal contrasting patterns and processes in the macroevolutionary history of a clade of scorpions. J Evol Biol 30:814–825

    Google Scholar 

  • Kovarik F (2003) A review of the genus Isometrus Ehrenberg, 1828 (Scorpiones: Buthidae) with description of four new species from Asia and Australia. Euscorpius 10:1–19

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci U S A 104:5925–5930

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA (2017) Negative density dependence mediates biodiversity productivity relationship across scales. Nat Ecol Evol 1:1107–1115

    PubMed  Google Scholar 

  • Latham RE, Ricklefs RE (1993) Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67:325–333

    Google Scholar 

  • Laurance WF (2009) Conserving the hottest of the hotspots. Biol Conserv 142:1137

    Google Scholar 

  • Lear G, Lau K, Perchec A-M, Buckley HL, Case BS, Neale M, Fierer N, Leff JW, Handley KM, Lewis G (2017) Following Rapoport’s rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environ Microbiol 19:3152–3162

    PubMed  Google Scholar 

  • Lee TM, Jetz W (2010) Unravelling the structure of species extinction risk for predictive conservation science. Proc R Soc B: Biol Sci 278:1329–1338

    Google Scholar 

  • Lira AFA, DeSouza AM (2014) Microhabitat use by scorpion species (Arachnida: Scorpiones) in the montane Atlantic rainforest, Brazil. Revista Ibérica de Aracnologia 24:107–108

    Google Scholar 

  • Lira AFA, DeSouza AM, Silva Filho AAC, Albuquerque CMR (2013) Spatio-temporal micro-habitat use by two co-occurring Species of scorpions in Atlantic rainforest in Brazil. Zoology 116:182–185

    PubMed  Google Scholar 

  • Lira AFA, Araújo VLN, DeSouza AM, Rego FNAA, Albuquerque CMR (2016) The effect of habitat fragmentation on the scorpion assemblage of a Brazilian Atlantic Forest. J Insect Conserv 20:457–466

    Google Scholar 

  • Lira AFA, DeSouza AM, Albuquerque CMR (2018) Environmental variation and seasonal changes as determinants of the spatial distribution of scorpions (Arachnida: Scorpiones) in Neotropical forests. Can J Zool 96:963–972

    Google Scholar 

  • Lira AFA, Salomão RP, Albuquerque CMR (2019a) Pattern of scorpion diversity across a bioclimatic dry-wet gradient in Neotropical forests. Acta Oecol 96:10–17

    Google Scholar 

  • Lira AFA, Pordeus LM, Salomão RP, Badillo-Montaño R, Albuquerque CMR (2019b) Effects of anthropogenic land-use on scorpions (Arachnida: Scorpiones) in Neotropical forests. Int J Trop Insect Sci 39:211–218

    Google Scholar 

  • Lira AFA, Badillo-Montaño R, Lira-Noriega A, Albuquerque CMR (2020) Potential distribution patterns of scorpion in north-eastern Brazil under scenarios of future climate change. Austral Ecol 45:215–228

    Google Scholar 

  • Lira AFA, Foerster SÍA, Salomão RP, Porto TJ, Albuquerque CMR, Moura GJB (2021a) Understanding the effects of human disturbance on scorpion diversity in Brazilian tropical forests. J Insect Conserv 25:147–158

    Google Scholar 

  • Lira AFA, Foerster SÍA, Albuquerque CMR, Moura GJB (2021b) Contrasting patterns at interspecific and intraspecific levels in scorpion body size across a climatic gradient from rainforest to dryland vegetation. Zoology 146:125908

    PubMed  Google Scholar 

  • Liu H, Yu R, Huang J, Liu Y, Zang R, Guo Z, Ding Y, Lu X, Li Q, Chen HYH (2020) Latitudinal diversity gradients and Rapoport effects in Chinese endemic woody seed plants. Forests 11:1–9

    CAS  Google Scholar 

  • Lomolino MV, Riddle BR, Whittaker RJ (2016) Biogeography: biological diversity across space and time. Oxford University Press, Oxford

    Google Scholar 

  • Lourenço WR (1980) Contribution à la connaissance systématique des Scorpions appartenant au “complexe” Tityus trivittatus Kraepelin, 1898 (Buthidae). Bulletin Du Muséum National d’Histoire Naturelle Paris 4:793–843

    Google Scholar 

  • Lourenço WR (1994) Diversity and endemism in tropical versus temperate scorpion communities. Biogeographica 70:155–160

    Google Scholar 

  • Lourenço WR (2002) Scorpion of Brazil. Les Éditions de I’If, Paris

    Google Scholar 

  • Lourenço WR (2003) Description of a new species of Tityus (Scorpiones, Buthidae) from Serra do Cipo in the State of Minas Gerais, Brazil. Rev Suisse Zool 110:427–435

    Google Scholar 

  • Lourenço WR (2005) Description of a new species of Tityus (Scorpiones, Buthidae) from the Parque Estadual de Vila Velha in the state of Paraná (Brazil). Acta Biológica Paranaense 34:15–26

    Google Scholar 

  • Lourenço WR (2006) Nouvelle proposition de découpage sous-générique du genre Tityus C.L. Koch, 1836 (Scorpiones, Buthidae). Boletín SEA 39:55–67

    Google Scholar 

  • Lourenço WR (2015) Comments on the Ananterinae Pocock, 1900 (Scorpiones: Buthidae) and description of a new remarkable species of Ananteris from Peru. C R Biol 338:134–139

    PubMed  Google Scholar 

  • Lourenço WR, Giupponi APL (2004) Description of a new species of “Tityus” Koch, 1836 (Scorpiones, Buthidae) from the States of Espirito Santo and Rio de Janeiro in Brazil. Revista Ibérica de Aracnología 10:237–243

    Google Scholar 

  • Makowski D, Ben-Shachar MSC, Patil I, Ludecke D (2020) Methods and algorithms for correlation analysis in R. J Open Source Softw 5:1–4

    Google Scholar 

  • MapBiomas Project (2021) Collection of Brazilian land cover & use map series (http://mapbiomas.org/). Accessed on 18 Sept 2021

  • Marini MA, Garcia FI (2005) Conservação de aves no Brasil. Megadiversidade 1:95–102

    Google Scholar 

  • Martins FM (2011) Historical biogeography of the Brazilian Atlantic Forest and the Carnaval–Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biol J Linn Soc 104:499–509

    Google Scholar 

  • Martins MA, De Carvalho WD, Dias D, França DDS, De Oliveira MB, Peracchi AL (2015) Bat species richness (Mammalia, Chiroptera) along an elevational gradient in the Atlantic forest of Southeastern Brazil. Acta Chiropterol 17:401–409

    Google Scholar 

  • Martins JG, Santos GC, Procópio REL, Arantes EC, Bordon KC (2021) Scorpion species of medical importance in the Brazilian Amazon: a review to identify knowledge gaps. J Venom Anim Toxins Incl Trop Dis 27:1–32

    Google Scholar 

  • Marques MCM, Swaine MD, Liebsch D (2011) Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest Biodivers Conserv 20:153–168

    Google Scholar 

  • McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Meiri S (2011) Bergmann’s rule – What’s in a name? Glob Ecol Biogeogr 20:203–207

    Google Scholar 

  • Menezes AA, Cáceres MES, Bastos CJP, Lucking R (2018) The latitudinal diversity gradient of epiphytic lichens in the Brazilian Atlantic Forest: does Rapoport’s rule apply? Bryologist 121:480–497

    Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    PubMed  Google Scholar 

  • Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s rule. Evolution 51:630–632

    PubMed  Google Scholar 

  • Murphy K, Carvalho P, Efremov A, Grimaldo JT, Molina-Navarro E, Davidson TA, Thomaz SM (2020) Latitudinal variation in global range-size of aquatic macrophyte species shows evidence ford a Rapoport effect. Freshw Biol 65:1622–1640

    CAS  Google Scholar 

  • Nime MF, Casanoves F, Mattoni CI (2014) Scorpion diversity in two different habitats in the Arid Chaco, Argentina. J Insect Conserv 18:373–384

    Google Scholar 

  • Nogueira AA, Bragagnolo C, DaSilva MB, Martins TK, Lorenzo EP, Perbiche-Neves G, Pinto-da-Rocha R (2019) Historical signatures in the alpha and beta diversity patterns of Atlantic Forest harvestman communities (Arachnida: Opiliones). Can J Zool 97:631–643

    Google Scholar 

  • Núñez-Flores M, Solórzano A, Hernández CE, López-González PJ (2019) A latitudinal diversity gradiente of shallow-water gorgonians (Cnidaria: Octocorallia: Alcyonacea) along the Tropical Eastern Pacific Ocean: testing for underlying mechanisms. Mar Biodivers 49:2787–2800

    Google Scholar 

  • Oliveira-Filho A, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil, and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM (2015) Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8:242–260

    Google Scholar 

  • Olivero PA, Mattoni CI, Peretti AV (2012) Morphometry and geographical variation of Bothriurus bonariensis (Scorpiones: Bothriuridae). J Arachnol 40:113–122

    Google Scholar 

  • Outeda-Jorge S, Mello T, Pinto-da-Rocha R (2009) Litter size, effects of maternal body size, and date of birth in South American scorpions (Arachnida: Scorpiones). Zoologia 26:43–53

    Google Scholar 

  • Papacostas KJ, Freestone AL (2016) Latitudinal gradient in niche breadth of brachyuran crabs. Glob Ecol Biogeogr 25:207–217

    Google Scholar 

  • Pebesma E (2018) Simple features for R: standardized support for spatial vector data. R J 10:439–446

    Google Scholar 

  • Peters RH, Wassenberg K (1983) The effect of body size on animal abundance. Oecologia 60:89–96

    PubMed  Google Scholar 

  • Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827

    Google Scholar 

  • Pie MR, Divieso R, Caron FS, Siqueira AC, Barneche DR, Luiz OJ (2021) The evolution of latitudinal ranges in reef-associated fishes: heritability limits and inverse Rapoport’s rule. J Biogeogr 48:2121–2132

    Google Scholar 

  • Pintor AFV, Schwarzkpof L, Krockenberger AK (2015) Rapoport’s rule: do climatic variability gradients shape range extent? Ecol Monogr 85:643–659

    Google Scholar 

  • Pocock RI (1893) Notes on the classification of Scorpions, followed by some observations upon synonymy, with descriptions of new genera and species. Ann Mag Nat Hist 12:303–330

    Google Scholar 

  • Polis GA (1990) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Polis GA (1993) Scorpions as model vehicles to advance theories of population and community ecology: the role of scorpions in desert communities. Mem Queensl Mus 33:401–410

    Google Scholar 

  • Polis GA, McReynolds CN, Ford RG (1985) Home range geometry of the desert scorpion Paruroctonus mesaensis. Oecologia 67:273–277

    PubMed  Google Scholar 

  • Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA, Gillespie R, Graham CH, Hagen O, Hartig F, Huang S, Jansson R, Maliet O, Munkemuller T, Pellissier L, Rangel TF, Storch D, Wiegand T, Hurlbert A (2019) The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol Evol 34:211–223

    PubMed  Google Scholar 

  • Por FD (1992) Sooretama - the Atlantic rain forest of Brazil. SPB Academic Publishing, The Hague, p 130

    Google Scholar 

  • Porto TJ, Carvalho LS, De Souza CAR, Oliveira U, Brescovit AD (2014) Escorpiões da Caatinga: conhecimento atual e desafios. In: Bravo F, Calor AR (eds) Artrópodes do semiárido: biodiversidade e conservação. Printmídia, Feira de Santana

    Google Scholar 

  • Porto TJ, Pinto-da-Rocha R, Rocha PLB (2018) Regional distribution patterns can predict the local habitat specialization of arachnids in heterogeneous landscapes of the Atlantic Forest. Divers Distrib 24:375–386

    Google Scholar 

  • Prata BEM, Teixeira AP, Joly CA, Assis MA (2018) The role of climate on floristic composition in a latitudinal gradient in the Brazilian Atlantic Forest. Plant Ecol Evol 151:303–313

    Google Scholar 

  • Prendini L (2001) Substratum specialization and speciation in southern African scorpion: the effect hypothesis revisited. In: Fet V, Selden PA (eds) Memoriam Gary A. Polis. British Arachnological Society, Burnham Beeches

    Google Scholar 

  • Prendini L (2005) Scorpion diversity and distribution in southern Africa: pattern and process. In: Hubner BA, Sinclair B, Lampe KH (eds) African biodiversity: molecules, organisms, ecosystems. Springer, New York

    Google Scholar 

  • Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc B Biol Sci 267:1947–1952

    CAS  Google Scholar 

  • QGIS Development Team (2021) QGIS geographic information system. Open source geospatial foundation project. http://qgis.osgeo.org

  • Quintela FM, Iob G, Artioli LGS (2014) Diet of Procyon cancrivorus (Carnivora, Procyonidae) in restinga and estuarine environments of southern Brazil. Iheringia 104:143–149

    Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. Foundation for Statistical Commuting, Vienna, Austria

    Google Scholar 

  • Rabosky DL (2009) Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett 12:735–743

    PubMed  Google Scholar 

  • Rapoport A (1975) Toward a redefinition of density. Environ Behav 7:133–158

    Google Scholar 

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267

    CAS  PubMed  Google Scholar 

  • Raz S, Retzkin S, Pavlicek T, Hoffman A, Kimchi H, Zehavi D, Beiles A, Nevo E (2009) Scorpion biodiversity and interslope divergeat evolution canyon, lower Nahal Oren microsite, Mt Carmel, Israel. PLoS One 4:e5214

    PubMed  PubMed Central  Google Scholar 

  • Rein JO (2021) The scorpion files. Accessed at: https://www.ntnu.no/ub/scorpion-files/

  • Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Mittermeier RA (2018) From hotspot to hotspot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16:208–214

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Rohde K (1996) Rapoport’s rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodivers Lett 3:10–13

    Google Scholar 

  • Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, Bohm M, Castro-Herrera F, Chirio L, Collen B, Colli GR, Dabool L, Das I, Doan TM, Grismer LL, Hoogmoed M, Itescu Y, Kraus F, LeBreton M, Lewin A, Martins M, Maza E, Meirte D, Nagy ZT, Nogueira CC, Pauwels OSG, Pincheira-Donoso D, Powney GD, Sindaco R, Tallowin OJS, Torres-Carvajal O, Trape J-F, Vidan E, Uetz P, Wagner P, Wang Y, Orme CDL, Grenyer R, Meiri S (2017) The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol 1:1677–1682

    PubMed  Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16:401–414

    Google Scholar 

  • San Martín PR (1966) Escorpiofauna Brasileña III (Bothriuridae). Una nueva forma de “Bothriurus” del Brasil. Rev Bras Biol 26:181–190

    PubMed  Google Scholar 

  • San Martín PR (1967) Escorpiofauna Brasileña. II. Bothriuridae Redescripcin de Bothriurus moojeni Mello-Leitão, 1945. Physis 74:135–141

    Google Scholar 

  • San Martín PR (1968) Bothriurus vachoni, n. sp. del Brasil (Scorpionida, Bothriuridae). Acta Biologica Venezuelica 6:38–51

    Google Scholar 

  • Santos RL, Almeida EA, Almeida MG, Coelho MS (2006) Biogeography of the Bromeliad-dwelling scorpion Tityus neglectus Mello-Leitão (Buthidae) in Rio Grande do Norte, Brazil. J Bromel Soc 56:201–207

    Google Scholar 

  • Scriven JJ, Whitehorn PR, Goulson D, Tinsley MC (2016) Bergmann’s body size rule operates in facultatively endothermic insects: evidence from a complex of cryptic bumblebee species. PLoS One 11:e0163307

    PubMed  PubMed Central  Google Scholar 

  • Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA (2017) Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst 48:183–206

    Google Scholar 

  • Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180:511–519

    PubMed  Google Scholar 

  • Shimabukuro EM, Trivinho-Strixino S (2021) Elevational boundaries influence richness patterns at large spatial scales evinced by madicolous insects of the Brazilian Atlantic Forest. Ecol Entomol 46:1036–1046

    Google Scholar 

  • Silva RR, Brandão CRF (2014) Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLoS One 9:e93049

    PubMed  PubMed Central  Google Scholar 

  • Silva JMC, Casteleti CHM (2003) Status of the biodiversity of the Atlantic forest of Brazil. In: Galindo-Leal C, Câmara IG (eds) The Atlantic forest of South America: biodiversity status, threats, and outlook. CABS and Island Press, Washington, pp 43–59

    Google Scholar 

  • Silva FR, Almeida-Neto M, Arena MVN (2014) Amphibian beta diversity in the Brazilian Atlantic forest: contrasting the roles of historical events and contemporary conditions at different spatial scales. PLos One 9:e109642

    PubMed  PubMed Central  Google Scholar 

  • Silveira FAO, Barbosa M, Beiroz W, Callisto M, Macedo DR, Morellato LPC, Neves FS, Nunes YRF, Solar RR, Fernandes GW (2019) Tropical mountains as natural laboratories to study global changes: a long-term ecological research project in a megadiverse biodiversity hotspot. Perspect Plant Ecol Evol Syst 38:64–73

    Google Scholar 

  • Smith GT (1995) Species richness, habitat and conservation of scorpions in the Western Australian wheatbelt. Rec West Aust Mus 52:55–66

    Google Scholar 

  • Smith FA, Lyons SK (2013) Introduction. on being the right size: the importance of size in life history, ecology, and evolution. In: Smith FA, Lyons SK (eds) Animal body size. University of Chicago Press, Chicago

    Google Scholar 

  • Stephens PR, Wiens JJ (2003) Explaining species richness from continents to communities: the time-for-speciation effect in emydid turtles. Am Nat 161:112–128

    PubMed  Google Scholar 

  • Stevens RD (2013) Gradients of bat diversity in Atlantic forest of South America: environmental seasonality, sampling effort and spatial autocorrelation. Biotropica 45:764–770

    Google Scholar 

  • Stevens RD, Tello JS, Gavilanez SS (2013) Stronger tests of mechanisms underlying geographic gradients of biodiversity: insights from the dimensionality of biodiversity. PLoS One 8:e56853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sulakhe S, Dandekar N, Padhye A, Bastawade D (2020) Two new cryptic species of Isometrus (Scorpiones: Buthidae) from the northern Western Ghats, India. Euscorpius 305:1–24

    Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc Royal Soc B 278(1713): 1823–1830. https://doi.org/10.1098/rspb.2010.1295

  • Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic forest: lessons from aging human-modified landscapes. Biol Conserv 143:2328–2340

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Google Scholar 

  • Timms LL, Schwarzfeld M, Sääksjärvi IE (2016) Extending understanding of latitudinal patterns in parasitoid wasp diversity. Insect Conserv Divers 9:74–86

    Google Scholar 

  • Tseng M, Kaur KM, Pari SS, Sarai K, Chan D, Yao CH, Porto P, Toor A, Toor HJ, Fograscher K (2018) Decreases in beetle body size linked to climate change and warming temperatures. J Anim Ecol 87:647–659

    PubMed  Google Scholar 

  • Vasconcelos TS, Prado VH, da Silva FR, Haddad CF (2014) Biogeographic distribution patterns and their correlates in the diverse frog fauna of the Atlantic forest hotspot. PLoS One 9:e104130

    PubMed  PubMed Central  Google Scholar 

  • Visser V, Clayton WD, Simpson DA, Freckleton RP, Osborne CP (2014) Mechanisms driving an unusual latitudinal diversity gradient for grasses. Glob Ecol Biogeogr 23:61–75

    Google Scholar 

  • Wallace AR (1878) Tropical nature, and other essays. Macmillan and Company, London

    Google Scholar 

  • Warburg MR, Ben-Horin A (1981) The response to temperature gradients of scorpions from mesic and xeric habitats. Comp Biochem Physiol 68:277–279

    Google Scholar 

  • Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–1576

    CAS  PubMed  Google Scholar 

  • Weiser MD, Enquist B, Boyle B, Killenn T, Jøgensen P, Fonseca G, Jennings MD, Kerkhoff AJ, Lacher TE Jr, Monteagudo A, Vargas MPN, Phillips OL, Swenson NG, Vasquez Martınez R (2007) Latitudinal patterns of range size and species richness of New World woody plants. Glob Ecol Biogeogr 16:679–688

    Google Scholar 

  • Weiser MD, Buzzard V, Deng Y, He Z, Michaletz S, Shen L, Enquist BJ, Waide RB, Zhou J, Kaspari M (2017) Toward a theory for diversity gradients: the abundance-adaptation hypothesis. Ecography 41:255–264

    Google Scholar 

  • Weiser WD, Swenson NG, Enquist BJ, Michaletz ST, Waide RB, Zhou J, Kaspari M (2018) Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras. J Biogeogr 45:418–428

    Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JE, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Google Scholar 

  • Wickham H, François R, Henry L, Müller K (2021) Dplyr: a grammar of data manipulation. R package version 1.0.7. (1.0.7) [Computer software]. https://CRAN.R-project.org/package=dplyr

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    PubMed  Google Scholar 

  • Willig MR, Presley SJ (2018) Latitudinal gradients of biodiversity: theory and empirical patterns. Encycl Anthr 3:13–19

    Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Google Scholar 

  • Yamaguti HY, Pinto-da-Rocha R (2003) Taxonomic review of the genus Thestylus Simon, 1880 (Scorpiones: Bothriuridae). Revista Ibérica de Aracnología 7:157–171

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Randall W. Myster for inviting us to participate in the book through this chapter. We also thank Andria de Paula, Adriano DeSouza, Adriano Kury, Carlos Toscano-Gadea and Leonardo Carvalho for providing scientific literature. We would also like to thank the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for the postdoctoral scholarship (BFP -0121-2.05/20) to André F.A. Lira. Finally, we thanks the Estonian Research Council for providing financial support (PRG741) for Stênio Í.A. Foerster.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 7.1

Appendix 7.1

Scorpion species listed to the Brazilian Atlantic Forest. The occupancy refers to the number of 0.5° × 0.5° grid cells in which the species were present. “Rapoport” column states if the species were used to test the Rapoport’s Effect in the Brazilian Atlantic Forest; all species listed below were used to test the adequacy of Bergmann’s rule to the scorpion assemblages in the Brazilian Atlantic Forest. Bergmann’s reference states the source of the carapace length was obtained.

Species

Records

Occupancy

Rapoport

Bergmann’s reference

Bothriuridae

    

Bothriurus asper Pocock, 1893

147

18

yes

Lira et al. (2021a, b)

Bothriurus bonariensis (C.L. Koch 1842)

246

10

yes

Olivero et al. (2012)

Bothriurus moojeni Mello-Leitao, 1945

1

1

No

San Martin (1967)

Bothriurus sooretamensis San Martín, 1966

1

1

No

San Martin (1966)

Bothriurus vachoni San Martín, 1968

1

1

No

San Martin (1968)

Thestylus aurantiurus Yamaguti & Pinto-da-Rocha, 2003

8

7

yes

Yamaguti and Pinto-da-Rocha (2003)

Thestylus glasioui Bertkau, 1880

16

11

yes

Yamaguti and Pinto-da-Rocha (2003)

Urophonius iheringi Pocock, 1893

1

1

No

Pocock (1893)

Buthidae

    

Ananteris balzanii Thorell, 1891

16

5

yes

Outeda-Jorge et al. (2009)

Ananteris bernabei Giupponi, Vasconcelos & Lourenço, 2009

1

1

No

Giupponi et al. (2009)

Ananteris kuryi Giupponi, Vasconcelos & Lourenço, 2009

1

1

No

Giupponi et al. (2009)

Ananteris mauryi Lourenço, 1982

39

5

Yes

Lira et al. (2021a, b)

Isometrus maculatus (DeGeer, 1778)

26

7

Yes

Sulakhe et al. (2020)

Tityus aba Candido, Lucas, de Souza, Diaz & Lira-da-Silva, 2005

8

3

Yes

Candido et al. (2005)

Tityus adrianoi Lourenço, 2003

6

2

yes

Lourenço (2003)

Tityus bahiensis (Perty, 1833)

46

16

yes

Outeda-Jorge et al. (2009)

Tityus brazilae Lourenço & Eickstedt, 1984

222

19

yes

Lira et al. (2021a, b)

Tityus costatus (Karsch, 1879)

25

12

yes

Outeda-Jorge et al. (2009)

Tityus fasciolatus Pessôa, 1935

2

1

no

Lourenço (1980)

Tityus kuryi Lourenço, 1997

1

1

no

Outeda-Jorge et al. (2009)

Tityus mattogrossensis Borelli, 1901

47

8

yes

Outeda-Jorge et al. (2009)

Tityus neglectus Mello-Leitao, 1932

24

10

yes

Lira et al. (2021a, b)

Tityus pintodarochai Lourenço, 2005

1

1

no

Lourenço (2005)

Tityus potameis Lourenço & Leao Giupponi, 2004

7

7

yes

Lourenço and Giupponi (2004)

Tityus pusillus Pocock, 1893

12

6

yes

Lira et al. (2021a, b)

Tityus serrulatus Lutz & Mello, 1922

1063

58

yes

Outeda-Jorge et al. (2009)

Tityus stigmurus (Thorell, 1876)

460

24

yes

Lira et al. (2021a, b)

Zabius gaucho Acosta, Candido, Buckup & Brescovit, 2008

1

1

no

Acosta et al. (2008)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lira, A.F.A., Andrade, A.R.S., Foerster, S.I.A. (2023). Latitudinal Trends in Scorpion Assemblages of Brazilian Atlantic Forest: Do the Rapoport’s and Bergmann’s Rules Apply?. In: Myster, R.W. (eds) Neotropical Gradients and Their Analysis. Springer, Cham. https://doi.org/10.1007/978-3-031-22848-3_7

Download citation

Publish with us

Policies and ethics