Next Article in Journal
Enhanced Quick-Cooking Red Beans: An Energy-Efficient Drying Method with Hot Air and Stepwise Microwave Techniques
Next Article in Special Issue
Comprehensive Elemental Profiling of Romanian Honey: Exploring Regional Variance, Honey Types, and Analyzed Metals for Sustainable Apicultural and Environmental Practices
Previous Article in Journal
Biochemical Composition and Related Potential Nutritional and Health Properties of Sobrassada de Mallorca
Previous Article in Special Issue
Allium sativum L. var. Voghiera Reduces Aflatoxin B1 Bioaccessibility and Cytotoxicity In Vitro
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products

by
Teresa R. Tejada-Purizaca
1,
Pablo A. Garcia-Chevesich
2,3,*,
Juana Ticona-Quea
4,
Gisella Martínez
5,
Kattia Martínez
6,
Lino Morales-Paredes
4,
Giuliana Romero-Mariscal
7,
Armando Arenazas-Rodríguez
8,
Gary Vanzin
2,
Jonathan O. Sharp
2,9 and
John E. McCray
2,9
1
Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
2
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
3
Intergubernamental Hydrological Programme, United Nations Educational, Scientific, and Cultural Organization (UNESCO), Montevideo 11200, Uruguay
4
Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
5
Facultad de Geología, Geofísica y Minas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
6
Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
7
Escuela de Ingeniería Ambiental, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
8
Departamento Académico de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
9
Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
*
Author to whom correspondence should be addressed.
Foods 2024, 13(5), 762; https://doi.org/10.3390/foods13050762
Submission received: 1 January 2024 / Revised: 9 February 2024 / Accepted: 23 February 2024 / Published: 29 February 2024
(This article belongs to the Special Issue Toxic Residues and Risk Assessment in Food Safety)

Abstract

:
To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups—plants, fish, macroinvertebrates and mollusks, mammals, and “others” category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO’s advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.

1. Introduction

Being located next to the South American Andes, Peru is rich in water resources and an important food producer. The country is ranked among the main global exporters of grapes, avocados, mangos, asparagus, blackberries, bananas, ginger, and onions, among many other food products, with transactions of more than USD 13.8 billion/year [1]. However, in March 2022, the EU banned Peruvian avocados due to the high contents (over 0.05 mg/kg, the legal limit) of Cd [2]. In the same year, more Peruvian avocados (e.g., 0.03, 0.014, and 0.004 mg/kg above MPL on different occasions), peppers (Cd 0.07 mg/kg above MPL), Angola peas (Cd 0.013 mg/kg above MPL), organic cacao powder (Cd 0.6 mg/kg above MPL), chocolate (Pb 2.7 mg/kg above MPL), and organic ginger root (0.06 mg/kg above MPL), among other food products, were also banned for having high heavy metal contents [3]. Not surprisingly, Peruvian investigators have quantified heavy metals in many food products; for example, Chirinos-Peinado et al. [4] reported mean Cd concentrations greater than 500 mg/L in 40 milk samples collected near the Mantaro River (central Peru), which overpassed the legal limit nearly 200 times, through biological uptake and bioaccumulation [5]. Other Peruvian studies have reported metal content in food products such as cow (Bos taurus) milk in Moquegua (0.29 mg/kg of As) [6] and rainbow trout (Oncorhynchus mykiss) in Junín (6.11 mg/kg of Pb) [7], while Gutleb et al. [8] detected Hg levels above MPL in catfish (Pimelodus ornatus) in Madre de Dios (0.61 mg/kg).
Excessive levels of metal(loid)s (referred to as metals) in food products have a direct and significant impact on public health (e.g., [9]). A recent comprehensive review conducted by Skalny et al. [10] highlighted the culmination of two decades of research, revealing an association between Hg exposure and cancer. Additionally, various studies have linked Hg to psychological alterations, pregnancy issues, and other health concerns [11,12]. Another review by Suhair et al. [13] emphasized the adverse effects of Pb ingestion on children’s health, including conditions such as asthma and learning disabilities. Further investigations have indicated that Pb can also contribute to neurobehavioral issues, hearing and muscle functioning problems [14], permanent intellectual damage [15], and cardiovascular problems [16], among others (e.g., [17]). Cr, Cd, and As have been identified as substances capable of causing organ damage and various severe medical conditions [18,19,20]. Moreover, numerous other metals (detailed in Table 1) have been associated with a range of health consequences in humans (e.g., [21]).
As national and export food demands increase in Peru (e.g., [22]), the country faces serious public health and, by extension, economic challenges associated with the presence and bioaccumulation of metals in food and medicinal products. The “Platform of People Affected by Toxic Metals”, a Peruvian organization that seeks to protect victims of this growing environmental problem, estimates that more than 10 million Peruvian citizens are somehow affected by metals ingested through food and medicinal products. Taking this into account, the number of Peruvian studies that focus on this important topic (metal bioaccumulation in food and medicinal products) and published in peer-reviewed English journals has increased significantly in recent years (see Figure 1 and details in Table S1, Supplementary Materials), where crops, fish and medicinal plants are the primary research topics.
Although human exposure to toxic amounts of certain metals, such as arsenic, has existed since pre-industrial times in the region [23], recent studies [24,25] suggest that mining operations are increasing this exposure in the Peruvian Andes. In addition to impacts on commercialization and export [26], this exerts ecotoxicological effects as discussed by Herrera-Perez and Mendez [27], Custodio et al. [28,29], Molloy et al. [30], Weinhouse et al. [25], and Gerson et al. [31]. Despite a trending increase in research, as documented in Figure 1 and Table S1 (a total of 52 Peruvian studies related to bioaccumulation published in the English scientific literature), these studies have not incorporated a wealth of local knowledge and findings published in Spanish, providing motivation to conduct a national analysis that compiles and synthesizes this knowledge.
Table 1. Origins and health effects of metals included in this review.
Table 1. Origins and health effects of metals included in this review.
MetalHealth EffectsMain SourceReferences
HgMetallic taste, bad breath, nausea, vomiting, diarrhea and sporadically brownish discoloration of the incisors, emotional sensitivity, dementia, kidney damage, dermatitis, conjunctivitis, damage to color vision, and rhinitisMining activity
(gold mining)
[32]
AlRespiratory, neurological, and neurodegenerative diseases such as Parkinson’sThe mining industry, in mineral processing, in the production of alloys or metallic aluminum, and power plants that use coal[33,34]
SbHypertension, diabetes, liver damage, decayed teeth, carcinogenic effects, and polycystic ovary (breast cancer, prostate cancer, and colorectal cancer)Natural, industrial activities (painting and batteries), and mining.[35,36]
AsSkin lesions, cancer (different types), and arsenicosisIn naturally occurring rocks and minerals, wood that has been treated with copper chromate arsenate, and some pesticides[33,37,38,39]
BaAcute gastroenteritis and loss of reflexes (muscle paralysis).Natural and industrial activities (paints, cement, and fertilizers)[40]
BeAcute or chronic allergic or irritative reactions, berylliosis, and cancerNaturally in rocks, coal, sediments, volcanic material, which can thus contaminate groundwater[33,41]
CdAnemia, kidney dysfunction, osteoporosis, osteomalacia, respiratory problems, hypertension, nervous disorders, weight and appetite loss, and prostate and lung cancerNatural (minerals and volcanic activity) and industrial activities such as production of batteries, phosphate fertilizers, detergents and refined petroleum products, paints, plastics, and zinc refining[42]
SnFatigue, headaches, diarrhea, vomiting, muscle weakness, anemia, liver and kidney damage, and reduction in neurotransmitters in the brainRocks with natural tin content, tin mines, manufacturing industries that use tin such as in making plastics, food packaging, pesticides, and rodent repellents[33,43]
NiSkin conditions; dizziness; asthma; chronic bronchitis; lung embolism; respiratory failure; birth defects; heart disorders; allergic reactions; and lung, nose, larynx and prostate cancerIndustrial activities (metallurgy, batteries, solar equipment, and galvanization)[44]
AgDamage to the alveoli, argyria, and mild allergic skin reactionsIn water and air naturally via the erosion of rocks or minerals, mineral processing, and photo processing[33,45]
PbKidney dysfunction, kidney cancer, encephalopathy, poor attention span, memory loss and hallucinations chronic damage to the Central Nervous System (CNS) and Peripheral Nervous System (PNS), coronary heart disease, and cardiovascular functional abnormalitiesMining, industrial activities (batteries, paints, gas stations, glass production, and plastics)[46,47]
SeKeshan disease, cancer, type 2 diabetes, and diseases of the endocrine system and circulatory systemNaturally in rocks and soils and from agricultural and industrial waste (paints, enamels, rubber, dyes, fungicides, etc.)[33,48]
TlGastrointestinal symptoms, hair loss, and permanent neurological damage, which can be fatalRodenticides and pesticides[49]
TiHepatic damageFactories that produce titanium tetrachloride[33,50]
UKidney failure, decreased bone growth, DNA damage, carcinogenesis, and mutations in animalsNatural (groundwater), nuclear power plants, and industrial activities (catalysts and pigments)[51,52]
Galagarza et al. [53] developed a review of the chemical contaminants (including metals) contained in Peruvian plant-based food products. For the specific case of metals, the authors developed a review of six inorganic pollutants (Pb, Zn, Cu, Cd, As, and Cr) in 28 food products documented in 16 studies [54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. Building upon their findings, we conducted an extensive literature search of scientific publications related to metal bioaccumulation in Spanish (undergraduate and graduate theses from 50 public universities as well as peer reviewed journals and reports) considering 16 metals that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U because they were evaluated in the country’s investigations) and bioaccumulated in food and medicinal products common to the Peruvian diet. For each study and food type evaluated (including medicinal and topical products), the maximum documented metal values were considered. Outliers associated with metal-based laboratory extractions, plants used for bioremediation in post-mining and other polluted soils, or possible measuring errors were excluded from the statistical analysis, which consisted of creating boxplots to provide a general idea of the national distribution of metal concentrations, as well as calculating the national mean and standard deviation for each metal. Throughout the manuscript, where enough data existed for statistical comparisons, we evaluated metal concentration according to logical groupings such as species or material (tissue, body parts, etc.), using Tukey’s honestly significant difference (HSD) test within the statistical software JMP [70]. A p-value less than 0.05 was considered statistically relevant. As the reports varied with respect to normalization, metal concentrations were normalized to mg of metal per kg of product for consistency. Then, these were tabulated and classified into different food or medicinal categories, each with independent statistical analyses. The obtained values were compared with the MPL of the World Health Organization (WHO, Codex Alimentarius) for contaminants in food and medicinal products (Table S2), identifying metals and food products that were below the norm, above it, or not regulated (i.e., either the metal or the species is not included in the WHO standards). This national evaluation included the geographical and temporal evolution of the studies (and individual analyses) performed in Peru as well as which research institutions are leading metal uptake and bioaccumulation studies in the country. Finally, for consistency and better organization, food and medicinal products were differentiated and combined in the same categories (i.e., when a product is edible and medicinal), giving preference first to food sources. This analysis provides the most comprehensive database to date of metal bioaccumulation in food/medicinal products consumed domestically in Peru. Therefore, it provides a foundation for a further understanding of the mechanisms of human exposure that could help inform regulatory actions that protect local inhabitants and could increase the economic viability of Peru’s export to the international market.

2. Findings and Discussion

2.1. Comparison to WHO Advisory Lists

A significant portion of the metal concentrations found in this national review were above WHO standards, where Cd and Pb are the most problematic metals (see Table 2). However, what drew the most attention is the fact that most of the documented metals in the country are currently not regulated under the WHO system in any of the food-type classifications, suggesting an urgent need to regulate the toxic contaminants that Peruvians are consuming through the food/medicinal products found in this investigation. Assuming that the diversity of food products is increasing and given that WHO benchmarks miss some prominent sources of nutrition consumed by Peruvian citizens, there is a need to refine and update recommendations to better protect public health in Peru. For example, the categories macroinvertebrates and mollusks and mammals (see Section 2.2 for details) have only one regulated metal (Cd and Pb, respectively) (Table 2), an indication that changes in the regulatory system are needed.
Based on a simple analysis of several current international food regulation systems, there is a large inconsistency in MPL values among the standards as well as the metals involved. Table 3 shows a general comparison of metals involved in different international food standard systems. Most standards consider Total Hg (and/or, methylmercury, CH3Hg), As (Total and/or Inorganic), Cd, Sn, and Pb, with only one including Sb (South African). While Hg is regulated in its elemental form, some standards specifically request MPLs for CH3Hg (the WHO, Cuba, and S. Africa). Similarly, As is most times required as Total (As(1) in Table 3), but it is also sometimes required in its inorganic form, or As(2) in Table 3 (Australia–NZ, S. Africa). Additionally, MERCOSUR, an acronym for “Mercado Común del Sur” (Southern Common Market), was established as a regional trade agreement in 1991 with four founding nation states: Argentina, Brazil, Uruguay, and Paraguay, and it is one of the standards with the most food categories. Taking into account the wide range of metals found in Peruvian food/medicinal products through this review, national standards should be based not only on the WHO system (which the country currently is under), but also on South African standards, including an additional number of toxic metals found in this analysis as well (Al, Ba, Be, Ni, Ag, Se, Tl, and Ti), all designed so that each product that any Peruvian consumes should not contain metals above toxic concentrations.
Worldwide, the most commonly controlled metal is Pb (280 food categories) followed by Cd, As (Total), Hg, and Sn. For the specific case of the WHO (see Table S2), the most widely used advisory body in the world (including Peru), As is present in six food categories including water and salt, two categories for rice, and the remaining categories of edible fats and oils, and fat spreads and blended spreads. Similarly, 17 categories include Cd, which are water and salt, two types of chocolate, marine bivalved mollusks, and cephalopods, and the rest are plant-related food products. Pb, on the other hand, is considered in 41 categories, including water and salt, canned fruits, jams, jellies and marmalades, mushrooms, canned vegetables, fruit juices, infant formula, fish and meat (cattle, pig, sheep, and poultry), milk and milk products, wine and liqueur, and specific products such as canned chestnuts and canned chestnut puree. Hg (a very common contaminant found in this review) is considered just for water and salt, while CH3-Hg is considered according to the WHO standards in only four species of fish (tuna, alfonsino, marlin, and shark), excluding fish species found in this review; the WHO norm states: “If the total mercury concentration is below or equal to the MPL for methylmercury, no further testing is required, and the sample is determined to be compliant with the MPL. If the total mercury concentration is above the ML for methylmercury, follow-up testing shall be conducted to determine if the methylmercury concentration is above the MPL”. Finally, Sn is included in seven WHO categories (canned food, canned brewages, and specific types of canned meat and ham). However, despite their tremendous global influence, the WHO standards generally do not include important metals (and food/medicinal products) that are present in Peru (see Table 2). Moreover, metals such as Ba, Ag, Tl, and Ti, which have been identified in this review (Section 2.3), are not included in any international standards for MPLs despite their toxicity and potential harmfulness to humans. For example, Ba was found in this review and is considered toxic [71], being reported in various food products around the world (e.g., [72,73,74]). According to a report released by the US Department of Health and Human Services (Agency for Toxic Substances and Disease Registry) [75], excessive ingestion of Ba can cause paralysis; the largest Ba concentration in Peru was documented by Carpio [76] for the medicinal plant Yana llachu (Elodea potamogeton) (2.77 mg/kg) and by Huancaré [77] in rainbow trout’s muscular tissue (15.57 mg/kg), both being widely consumed by Peruvians. Similarly, though evaluated on nine occasions and not showing any presence up to date other than in rainbow trout’s kidney by Acosta [78] (0.003 mg/kg), U has been linked to kidney failure and death and has been documented to be released from atrophic activities such as mining (e.g., [79]), so its regulation might not be justified for Peru. All the above represent just examples of how important it is to monitor toxic metals that are present in actual food/medicinal products that are normally consumed in Peru.
In addition to the above, there are clear inconsistencies among international standard systems in terms of metals and food products considered in this Peruvian review. For example, Table 4 details the metal MPLs included in seven international standards under the general categories “Fish” and “Fruits”, both showing how heterogeneous the international system currently is, with the Cuban standards being the most complete (for these two particular cases). Importantly, most countries/regions differ in terms of how each classifies food, which ranges from highly general to specific. A clear example is represented by the category “Fish” (Table 4), in which some countries/regions classify them just as “Fish” (Cuba, Australia–New Zealand, Brazil, South Africa, and Switzerland), while others have additional MPLs for some specific species (e.g., the WHO and EU). Similar situations occur for some vegetables, processed foods, and animal meat, among many others, suggesting the need to use international standards that can be tailored to specific countries and regions such as Peru.

2.2. Metal Bioaccumulation in Peruvian Food/Medicinal Products

A total of 231 Spanish-language scientific publications were used to generate a centralized database of metal concentrations in different Peruvian food/medicinal products (Table 5). Those publications were distributed among undergraduate university theses (a total of 143 publications, 62%), graduate theses and dissertations (55, 24%), peer-reviewed journals (22, 10%), and government and research reports (11, 5%). Peruvian national universities played a prominent role, with 7 of them having at least 10 publications; conversely, only 18 public universities (out of 50) did not show any research related to this topic (see Table S3). Building upon the findings from this review, further bioaccumulation-related national reviews should include the private educational sector (92 additional universities nationwide) [80], which represents a valuable source of information that needs to be explored.
This broadly reaching data collection resulted in documentation of metal bioaccumulation across a total of 239 species. As summarized in Table 5, the species identified from this dataset were subsequently organized into five main categories: plants (Table S4), fish (Table S5), macroinvertebrates and mollusks (Table S6), mammals (Table S7), and other food types that did not clearly classify in the above categories (Table S8).
Most publications (59%) investigated bioaccumulation in plants, followed by fish (21%) and macroinvertebrates and mollusks (10%), with mammals and other categories representing 5% each. Considering all studies included in this review, a total of 1907 individual analyses were found, with plants (1211 analyses, 64%) being the most evaluated food category, followed by fish (284 analyses, 15%), macroinvertebrates and mollusks (214 analyses, 11%), mammals (105 analyses, 6%), and other categories (93 analyses, 5%). The number of scientific publications related to bioaccumulation in Peru has increased with time, with a temporary potential dip in 2020 that coincided with the height of the COVID-19 pandemic (Figure 2). The findings from each above-mentioned food category classification are discussed in the following subsections.
The geographic distribution of scientific publications found in this national review is illustrated in Figure 3. Most publications related to metal bioaccumulation are concentrated in the Department of Lima (10%) followed by Junin and La Libertad (8% each), Arequipa (7%), and Ucayaly (7%). As discussed later, this geographic distribution can be linked to local resources. However, it is important to mention that Lima has ten national universities, while regions usually have between one and three, which could explain the large concentration of studies from the country’s capital department.

2.3. Metal Bioaccumulation According to Food Category

2.3.1. Plants

Plant food products were by far the category with the most reported cases of metal bioaccumulation in Peru (1211 documented analyzes, as previously mentioned). In total, 154 plant species were evaluated for metal bioaccumulation in Peru. These plants were further categorized under leaves (201 analyses, 17%), underground components (143 analyses, 12%); fruits and grains (167 analyses, 14%); seeds and their parts (141 analyses, 12%); peel, stems, and bark (142 analyses, 12%); processed foods (197 analyses, 16%); mixtures (205 analyses, 17%); and other categories (15 analyses, 1%), indicating that in general, plant components have been well studied in terms of metal content, at a national level. Table S4 details the metal concentrations of all plants, plant portions, and plant-derived food/medicinal products, including products below (311 analyses, 26%) and above (197 analyses, 16%) the WHO standards as well as those currently not regulated (703 analyses, 58%) (see Section 2.1 for more details).
The statistical analysis revealed that aerial, non-reproductive tissues such as leaves, stems, peels, and bark bioaccumulate metals at higher concentrations than underground components, fruits, grains, and processed or mixtures of materials. For example, As is higher in tissues such as peels, stems, and bark than in fruits, grains, and processed material, while Cr is higher in leaves than in fruits and grains, mixtures, and processed material. Leaves also appear to bioaccumulate Hg in higher concentrations in leaves relative to fruits, grains, and processed components. Data for Ni concentration were available for the processed and mixtures category and were found to be higher in the processed category, attributable to Ni concentration in teabags (see Table S4 for details).
Among the most common plant-related food products containing metal concentrations above the WHO’s standards are those high in Cd such as medicinal chocho (Lupinus mutabilis) stems (50.4 mg/kg), roots (46.4 mg/kg), and leaves (16.5 mg/kg) [81]; roots from pastureweed (Cyathula prostrata) (11.2 mg/kg) [82]; and potato (Solanum tuberosum) leaves (11.1 mg/kg) [83]. Moreover, common edible plant-based products above Cd-related MPLs are asparagus (Asparagus officinalis) sprouts (4.4 mg/kg) [84] and corn (Zea mays) grains (3 mg/kg) [85]. Another clearly problematic regulated metal in Peruvian plant-based products is Pb, highlighting medicinal species such as queñua (Polylepis sp.) (228.6 mg/kg) [86], senecio (Senecio rufescens) (64.8 mg/kg) [87], and fig (Ficus nitida) (54.9 mg/kg) [88] leaves, as well as edible species corn (13.1 mg/kg) [85] and cacao (Theobroma cacao) fruit (9.9 mg/kg) [89]. Arsenic was also present above regulatory thresholds in rice (Oryza sativa) grains (0.6 mg/kg) [90], which is higher than prior documentation of the concentrations in Australian rice (0.14 mg/kg) as reported by Rahman et al. [91]. Despite the above, the most concerning fact is the clear presence of high metal concentrations and/or plant-based products that are not regulated by the WHO standards. For example, high metal concentrations were detected in medicinal products such as arctic rush (Juncus arcticus) (50.1 mg/kg of As) [92], remocaspi (Aspidosperma rigidum) bark (7.1 mg/kg of Hg) [93], and huacapurana (Campsiandra angustifolia) leaves (17.5 mg/kg of Cr) [94]. Similarly, among the edible plant-based products reported with highest non-regulated metal concentrations are cacao seeds (6.9 and 30.9 mg/kg of Cd and Pb, respectively) [95], camomille (Matricaria chamomilla) teabags (15.7 mg/kg of Pb) [96], glasswort (Sarcocornia fruticosa) stems (1.6 mg/kg of As) [97], suggarcain (Saccharum officinarum) juice (0.5 mg/kg of Hg) [98], and yuca (Manihot esculenta) tuber (4.1 mg/kg of Cr) [99], among others (see Table S4 for details). Unfortunately, the number of plant-based edible/medicinal products found in this review was so large that making a comparative analysis (including metal concentrations reported in other countries) is not practical. However, the information contained in Table S4 is valuable and should be a starting point for further investigations.
Additionally, a number of plant species contained higher metal concentrations. Arctic rush (Junkus arcticus) was statistically higher in As than 86 other species, while tarwi (Lupinus mutabilis) was higher than 18 species, and remocaspi (Aspidosperma rigidum) was higher than 5 species. Cadmium was higher in chocho (Lupinus mutabilis) when compared to 149 other plant species, while pastureweed (Cyathula prostrata) was higher than 109 species. For Cr, huacapurana (Campsiandra angustifolia) was statistically higher than 14 other species, while remocaspi was higher than 2. Mercury in remo caspi (Aspidosperma excelsum) was higher than 59 other species, while hinojo llachu (Mysiophyllum elatinoides) and yana llachu (Elodea potamogeton) were higher than 8 and 4 species, respectively. Six species were elevated in Pb concentrations relative to other species in the data set, including figs (Ficus nitida), panamito bean (Phaseolus Vulgaris), queñua (Polylepis sp.), senecio (Senecio rufescens), manayupa (Desmodium molliculum), and anis (Pimpinella anisum).
Based on Table S4, medicinal/edible plant-based products that seem to be safer to consume are ortiga (Malvaviscus sp.) [100], cilantro (Coriandrum sativum) [101], chope (Vochysia sp.) [100], and camu camu (Myrciaria dubia) [102] leaves; yarina (Attalea sp.) [100], cabbage (Brassica oleracea) [103], and radish (Raphanus sativus) [104] roots; and olive (Olea europaea) [90], mango (Mangifera indica) [56], and banana (Musa paradisiaca) [105] fruits.
However, the above examples do not represent a strict rule because what seems to be safer in one region can be contaminated in other places within the country; similarly, some products might not contain a specific metal, but they could also show high concentrations of other pollutants. For example, corn grains have been reported with very low (0.01 mg/kg) As concentrations in Arequipa [64], but with violations of the WHO standards for Pb in Lima [85]. Further investigations should evaluate each product, each metal, and each geographical location to develop a list of safe and non-safe plant products to consume based on those variables. Equally important, since most edible/medicinal plant-based products (and metals) included in this review are not regulated by the WHO standards, it is urgently necessary to regulate them to ensure that people in Peru are not at risk of ingesting unhealthy amounts of metals (see Section 2.1 for more details).
Figure 4 left illustrates the nationwide statistical distribution of metal concentrations, while Figure S1 shows the mean, sample size, and standard deviation values of all plant-related metals found in this national review, indicating that Cd (37% of total analyses), Pb (28%), As (10%), Hg (7%), Cr (7%), and Ni (3%) are the metals most evaluated nationwide, with the rest of the contaminants representing 1% or less each. In terms of concentrations, Al, As, Ba, Cd, Cr, Ni, and Pb are the contaminants present with the highest values (national averages greater than 1 mg/kg) among plant-based food/medicinal products found in this analysis despite their health consequences for humans (e.g., [106]). Of particular interest is Al, a metal not regulated by the WHO (Table S2), with a national average of 11.4 mg/kg. Moreover, it is important to keep in mind that only As, Cd, Sn, and Pb are regulated under the WHO standards for plants products, and even though some metals found in Peruvian plants are reported in lower concentrations (less than 1 mg/kg), they still might be harmful to humans. For example, one of the lowest concentrations was found for Se (national mean of 0.59 mg/kg) in glasswort (Sarcocornia fruticosa) leaves (an edible Peruvian plant that is not normed under the WHO’s standards) in Lima [97] (see Table S4), but excessive ingestion of this metal can cause digestion issues [107].
Geographically speaking (Figure 4 (right)), the regions with more publications were Junin (18 studies, 11.5%) and La Libertad (16 studies, 10%), followed by Lima, Arequipa, Huánaco, and Ucayali. Only two departments (Lambayeque and Apurimac) showed a complete absence of scientific publications on this topic. According to the Ministry of Agriculture [108], the regions (or departments) with the largest agricultural surfaces are San Martín, Cajamarca, and Puno, suggesting that based on this analysis and for the latter region, plant products might be safer, the rivers used for irrigation purposes might be less polluted, or more likely, there has been no initiative to study bioaccumulation in those areas of the country. Thus, additional research is needed to determine the reasons for this lower number of publications in regions with high agricultural productivity. Taking into account the above, there is no clear correlation between high- or low-reported cases and location, at least from the perspective of administrative boundaries, so further studies should focus on the specific characteristics of local rivers used by downstream agricultural activities. For example, Tejada-Meza et al. [109] recently documented high tannery-derived metal contents in surface waters draining directly into the Chili River (Arequipa Region), whose waters are used to irrigate thousands of hectares of agricultural crops. Additionally, mining and other human activities could affect metal concentrations in river waters used to irrigate agricultural fields in this arid region of Peru (e.g., [110]), not mentioning that rivers in this part of the Andes naturally contain metals (e.g., [111]); for example, Regis et al. [112] reported high As concentrations in the Tambo river (Arequipa Region), and such metal has been reported in many food/medicinal products in that same region (Table S4). Whatever the origin of the metal pollution is, the safest and most appropriate way to deal with this growing problem (metal bioaccumulation in plant-based food/medicinal products) is to treat polluted river waters before they are used for irrigation purposes, as suggested by Thomas et al. [113] to decrease Cd concentrations in Peruvian cacao beans. Furthermore, constructed wetlands (alone or in combination with other treatment methods such as membrane filtration [112]) might represent a cost-effective method for improving water quality in Peru [114]. Finally, stronger regulations are highly needed to demand proper treatment of agricultural crops and plants that Peruvians consume for food or medicinal purposes.

2.3.2. Fish

Following plants, fish was one of the categories with the most reported bioaccumulation cases in Peru (a total of 284 documented analyses). Forty-seven species of fish were tested for bioaccumulation of metals in the country. Based on the literature found, fish were categorized under muscular tissue (202 analyses, 71%) and other parts of the body that Peruvians consume (82 analyses, 29%), with the latter including metal bioaccumulation in liver (12 analyses, 6%), kidney (2 analyses, 1%), gill (2 analyses, 1%), marrow (1 analysis, 0.5%), scale (1 analysis, 0.5%), bone (1 analysis, 0.5%), and mix and other parts including brain, gonad, and skin (6 analyses, 3%) (see Table S5). This suggests that bioaccumulation in fish is well studied in Peru for muscular tissues (the most commonly eaten part of the animal). However, only 47 analyses (17%) were below the WHO’s MPLs, while 28 analyses (10%) were above the WHO standards. Most importantly, 209 analyses (74%) were not regulated under the WHO standards (see Section 2.2 for more details), suggesting an urgent need to create a stricter regulatory system for Peruvian fish. Moreover, most (61%) of the analyses were performed in river (continental) species, while the rest corresponded to ocean fish. In both cases, most analyses resulted to be not regulated (73 and 85% for river and ocean fish, respectively), while results below MPLs were documented occasionally (7 and 3%, respectively), with the reminding violating the WHO’s standards.
Among the most common fish-related food products containing metal concentrations above the WHO standards are carachama muscle meat (Chaetostoma sp.), with a record of 5.09 mg/kg of Pb in Huánaco [115], although various Peruvian authors reported Pb contents above the WHO standards in muscular tissue of rainbow trout (Oncorhynchus mykiss), as well as other parts of fish bodies (see Table S5), since this metal is reported to bioaccumulate in trout elsewhere, although in lower concentrations, such as 3 mg/kg documented by McEneff et al. [116] in the United Kingdom. Furthermore, the highest Pb concentrations were found in the kidney of rainbow trout (12.54 mg/kg) [117], much higher than the 2.4 mg/kg documented in Norway [118]. Peruvians do consume fish kidneys for edible or medicinal purposes, suggesting high exposure to Pb. A comparison of metal concentration according to tissue type identified higher Cd in guts, kidney, and liver relative to muscle tissue and higher Hg in brain and liver tissue relative to muscle, liver, and kidney. While statistically relevant, these comparisons were from a small number of studies that may be impacted by confounding variables unaccounted for in the comparison.
Furthermore, the safest fish to eat is a function of the metal under subject as well as the geographical area where the species was caught; for example, muscle tissue from black rainbow trout has been reported to have Cd (1.52 mg/kg, non-regulated) in Apurímac [119], but none was found in the same species caught in Cajamarca [77]. Similarly, the native fish jumilla (Parodon buckleyi) has shown low regulated metal contents (Table S5), suggesting that this species could be safer to consume; however, Rosales et al. [120] reported Cd concentrations higher than 1.6 mg/kg in the same species in Huánco. Brown trout (Salmo trutta) seems to have low metal content (Table S5), inconsistent with other studies that have found high metal concentrations in the same species in Norway (e.g., [121]). Despite the above, perhaps the most important metal studied in fish is Hg. Previous studies documented 10 mg Hg/kg in brain and liver of Chilean jack mackerel (Trachurus murphyi) [122], and 1.2 and 1.1 mg Hg/kg of this toxic metal in muscular tissue from eastern pacific bonito (Sarda chiliensis) [123] and vulture catfish (Calophysus macropterus) [124], respectively. Mercury bioaccumulation in fish has been associated with illegal gold mining [125], a common practice in Peru that has been linked to Hg pollution in Peruvian rivers (e.g., [126]). In addition to Hg in fish, Ramos [127] reported a concerning 13.5 mg/kg of As in canned tuna (Thunnus sp.) sold in Arequipa, much higher than the maximum of 1.42 mg/kg reported by Andayesh et al. [128] in Iran. This As concentration in canned tuna represents a statistical outlier relative to other species in the data set. In conclusion, further studies are needed to confirm how safe the documented species are to ingest by humans, depending on the type of pollutant, type of fish, and region of origin.
Figure 5 (left) illustrates the nationwide statistical distribution of metal concentrations, while Figure S2 shows the mean of metal concentrations found in fish in this synthesis, with Hg featured most prominently (28% of total analyses) followed by Pb (26%), Cd, (20%), and As (7%). However, there is also an isolated case documenting extremely high concentrations of Al (24.5 mg/kg) and Cd (13.5 mg/kg) concentrations in canned tuna (Thunnus sp.) [127] (as previously mentioned), which are much higher than what other authors have found in the Mediterranean Sea [129] and Brazilian markets [130], respectively, for the same species. Moreover, the metals that were reported at the highest concentrations nationwide were Ba (15.57 mg/kg) in rainbow trout [77], Cd in royal pleco (Panaque nigrolineatus) (1.62 mg/kg) [115] and jumilla (Parodon buckleyi) [120], and Pb in rainbow trout (10.45 mg/kg) [77]. It is important to keep in mind that only CH3-Hg, Sn (canned fish), and Pb (fish and four fish species) are regulated under the international WHO standards (see Table S1 and Section 2.1), indicating an urgent need to regulate other metals that have been found in high concentrations in Peru, to ensure that people in the country are not at risk of ingesting unhealthy amounts of these contaminants. Also, even though some metals found in Peruvian fish are reported in lower concentrations (less than 1 mg/kg), they still might be harmful to humans, so further studies should carefully evaluate each metal to define healthy MPLs.
In terms of habitat, metals considered for both river and ocean species were Pb (27 and 15% of total analyses performed in river and ocean fish species, respectively), Hg (26 and 59%), Cd (23 and 13%), and As (11 and 10%), and occasionally Ni (2%), Se (2%), and Cr (2%) in river species, and Al (3%) in ocean fish. Also, only river species were tested for CH3-Hg (8%) even though shark and tuna were studied and have published advisory levels by the WHO (see Table S2). As illustrated in Figure S3, Hg, As, and Cd seem to be found at higher concentrations within ocean fish species, while Pb was documented with higher concentrations in river species. This difference should be further studied to determine what the sources of pollution are in both types of habitats to better understand why certain metals are detected and where.
Geographically speaking (Figure 5 right), the regions with more studies were Madre de Dios (8 studies, 15%), Loreto, Ucayali (7 studies each, 13% each), and Puno (5 studies, 9%), i.e., the eastern portion of the Andes where rainforests are located (i.e., freshwater fish species). A reasonable explanation for this is the fact that mining operations exist in those regions, leading to more metal concerns in surface waters, in addition to the naturally occurring metals that exist in rivers that flow from the Peruvian Andes, as previously discussed (see Section 2.3.1). Though in smaller quantities compared to eastern regions, Lima, Arequipa, Moquegua, and Tacna represent the majority of the national coastal fish-related research (Figure 5 right). Furthermore, additional studies are needed to determine, for example, the link between river water quality and metal content in fish located in both coastal and inland areas.

2.3.3. Macroinvertebrates and Mollusks

Bioaccumulation in Peruvian macroinvertebrates and mollusks has been less documented than plants and fish, with a total of 26 studies and 214 analyses, of which 77 analyses (36%) corresponded to macroinvertebrates, and 137 (64%) were conducted in mollusks. Most analyses (62%) were performed in muscular tissue, while the remaining (38%) were done in other organs represented by digestive gland, exoskeleton, gill, gonad, and intestine (1 analysis each, 2% of total each), guts (4 analyses, 7%), gutted body (11 analyses, 18%), hepatopancreas and quelas (2 analyses each, 3% each), and whole body (3 analyses, 5%). However, only 20 species were evaluated (5 macroinvertebrates and 15 mollusks), suggesting that further research is needed to investigate metal bioaccumulation in other species from this food category.
Table S6 shows the metal concentrations of all macroinvertebrates and mollusks and their body parts, including products below (24 analyses, 11%) and above (5 analyses, 2%) the WHO standards and those currently not regulated (185 analyses, 86%) (see Section 2.1 for more details). Following the WHO’s standards, no macroinvertebrate species evaluated is currently regulated even though high metal contents were reported such as 75.7 and 37.3 mg/kg of As in muscular tissue from Chilean crab (Hepatus chilensis) and Cancer crab (Romaleon polyodon), respectively, in Ica [131]; 280 mg/kg of Al in muscular tissue from Changallo shrimp (Cryphiops caementarius) in Arequipa [132]; and 12.4 mg/kg of Pb in pincers of hairy Crab (Cancer setosus) in Ancash [133], just to name a few concerning examples. Moreover, even though some Peruvian mollusks are regulated for Cd and only two analyses showed concentrations above MPLs (2.7 and 2.1 mg/kg in muscular tissue from magellan mussel (Aulacomya ater) in Arequipa and Lima, respectively [134]), the majority of metals detected in mollusks are not regulated by the WHO. Among the most common food products related to this classification containing metal concentrations below international standards are Chilean scallop (Argopecten purpuratus) and navajuela (Tagelus dombeii) [135]. Moreover, Figure 6 (left) illustrates the nationwide statistical distribution of metal concentrations, while Figure S4 shows the mean of all macroinvertebrate- and mollusk-related metals considered in this review, with Pb (28%), Cd (26%), Hg (12%), and Ni (7%) being the contaminants that have been most documented for this food category in Peru. The metals that were reported in the highest concentrations nationwide (above 10 mg/kg) were Al (mean of 112.9 mg/kg), As (15.0 mg/kg), and Ba (27.7 mg/kg), while Cd, Sn, Pb, Se, and Ti were documented with averages above 1 mg/kg (see Figure S4). When evaluating the entire macroinvertebrate and mollusk list according to metal, Al represents an outlier. The Al value is attributable to one species, changallo shrimp (Cryphiops caementarius), which was evaluated in two different studies in Arequipa [132,136]. However, it is important to keep in mind that only Cd and Sn (canned food) are listed under the international WHO standards (Table S2), and even though some metals found in in this category are reported in lower concentrations (less than 1 mg/kg, Figure 6 left), they still might be harmful to humans.
As expected, scientific publications were distributed among most coastal departments (Figure 6 right), led by Moquegua and Tacna, though research has been developed in only seven regions nationwide. No studies were found in the coastal departments La Libertad and Lambayeque, suggesting that more research is needed to evaluate the macroinvertebrates and mollusks that exist in these regions. In fact, La Libertad is known for having high metal contents in rivers flowing into the Pacific Ocean (e.g., [137]).

2.3.4. Mammals

Bioaccumulation in Peruvian mammals has been less documented than other food categories, with a total of only two species (see further down), 13 scientific publications, and 105 analyses. Both species and their products (e.g., milk) are consumed by humans, where 66 analyses (63%) corresponded to body parts from Alpaca (Vicugna pacos), a very common protein source in Peru. Body part analyses were found for muscular tissue (14 analyses, 13% of total); liver, lung, and bone (12 analyses each, 11% each); and fiber (4 analyses, 4%). The remaining 39 analyses (37%) were conducted on cow’s (Bos taurus) milk (35 analyses, 33% of total analyses) and cheese (4 analyses, 4%). However, even though “alpaca meat” is not included in the WHO’s standards, national authors documented the presence of four metals (Hg, Cd, Pb, and one analysis showing As) in this Peruvian food type, highlighting the findings by Orellana et al. [138] (English literature), who documented high Cr concentrations in Huancavelica (see Table S7). Moreover, cuy (Cavia porcellus, another common food source in Peru) is not regulated either, and no metal analysis was found for it. In addition to cuy, no scientific publications were found for cow and pig meat, both of which are a common food source for Peruvians, suggesting an urgent need to evaluate metal bioaccumulation in these national protein sources. The need is also clear for regulating such animals and metals found in this review to ensure that people in Peru are not at risk of ingesting unhealthy amounts of contaminants.
All this suggests that bioaccumulation in mammals is not well studied in the country; similarly, it is important to know how these animals are affected by the ingestion of contaminated plant-based feed or contaminated water. In fact, though not being part of this review, Peruvian authors have reported metal contents (Hg, Al, As, Ba, Cd, Cr, Ni, and Pb) in plant species commonly used for forage (e.g., [76,92,139,140,141,142,143,144,145,146,147,148,149,150]) that could contribute to bioaccumulation in edible mammals. Considering this, further studies should focus on the specific characteristics of local rivers used for animal drinking, metal concentrations in soils, and forage-type plants that farmers use to feed domestic mammals or regions where range-free mammals naturally exist.
Table S7 shows the metal concentrations of all mammals, their body parts, and processed foods, including products below (2 analyses, 2%) and above (13 analyses, 12%) the WHO standards and those currently not regulated (90 analyses, 86%) (see Section 2.2 for more details). Among the most common mammal-related food products containing metal concentrations above international standards is milk. Nationwide, Pb was above the norm for most analyses conducted on milk, agreeing with the findings by Ismail et al. [151], who developed an international review (excluding Latin American countries) and found evidence of concerning metal concentrations in milk from Egypt, Iran, Serbia, Poland, Hungary, and Croatia. Based on the findings by those authors, the highest global Pb concentration was documented in Egypt (7.02 mg/kg, by Malhat et al. [152]), while Peruvian records were 12.76 and 11.61 mg/kg as reported in Puno by Barcena [153] and Paredes [147], respectively, representing a concern that needs to be further studied and addressed in the country. Based on the mammal data set, there were no statistical differences between species, materials tested, or analytes.
Figure 7 left illustrates the nationwide statistical distribution of metal concentrations, while Figure S5 shows the mean of all mammal-related metals considered in this review, with Pb (30%), Cd (29%), Hg (21%), and As (20%) as the only contaminants that have been documented in Peruvian mammals. All metal concentrations presented nationwide averages were less than 1 mg/kg. However, it is important to keep in mind that only Pb is regulated under the international WHO standards for mammals (Table S2), and even though some metals found in Peruvian mammals are reported in lower concentrations (less than 1 mg/kg, Figure 7 left), they still might be harmful to humans (for example, the WHO’s MPLs for Pb is 0.1 mg/kg).
Based on Figure 7 (right), the regions with more scientific publications were Puno and Lima, followed by six more departments with only one study, while the rest of the country did not develop any research in the topic. However, grazing is indeed characteristic of more regions within the entire national territory [154], this being another indication that metal bioaccumulation in this food category is not well studied in Peru.

2.3.5. Other Food Categories

With a total of 16 species and 93 analyses, other categories not discussed above included (a) bees, honey, pollen, and propolis (5 analyses, 5%); (b) eggs (25 analyses, 27%); (c) linchen and fungi (46 analyses, 49%); (d) Algae (12 analyses, 13%); and (e) the edible frog Batrachophrynus macrostomus (4 analyses, 4%) (Table S8). This category represents very common food/medicinal products in Peru, with Pb (4.3 mg/kg) contents reported by Párraga et al. [155] in propolis (a Peruvian cold medicine), a medicinal product not regulated under the WHO standards. To put things into perspective, González-Martín et al. [156] reported Pb concentrations of around 0.1 mg/kg in propolis from Spain (more than 40 times smaller than what has been reported in Peru).
Similarly, non-regulated eggs from chicken (Gallus domesticus) and Japanese quail (Coturnix japonica) showed the presence of Pb (4 mg/kg), Cd (0.15 mg/kg), As (0.04 mg/kg), and Hg (0.5 mg/kg) [157,158,159,160]. To put Peruvian results into perspective, Aliu et al. [161] reported 0.07, 0.006, and 0.001 mg/kg of Pb, Cd, and Hg, respectively, in Kosovo, while Kirov et al. [162] documented maximum Pb and Cd concentrations of 0.27 and 0.05 mg/kg, respectively, in Bulgaria, suggesting that metal contents in Peruvian eggs are significantly higher than concentrations reported elsewhere.
Moreover, though some are regulated according to the WHO standards, medicinal/edible lichen and fungi also contained Pb (19 mg/kg), Ni (4.9 mg/kg), Cr (20.1 mg/kg), Cd (0.82 mg/kg), As (4.8 mg/kg), and Al (92.7 mg/kg). Even though no studies were found regarding metal bioaccumulation in edible/medicinal lichen, Protano et al. [163] reported maximum Pb, Ni, Cr, Cd, and As concentrations of 28.4, 8.4, 8.5, 0.43, and 1.51 mg/kg, respectively, in transplanted Lichen (Pseudovernia furfuracea) at sites adjacent to a solid-waste landfill in central Italy, indicating that Cr, Cd, and As concentrations reported in Peru are superior to those documented in highly contaminated sites.
The above studies suggest that bioaccumulation in those food/medicinal categories is well studied in Peru, although there is a clear need to evaluate metal contents in the muscular tissue (meat) of chicken and other birds commonly eaten in the country and how they are affected by ingesting contaminated feed. In fact, corn (an important feed type for domestic chicken) has been reported to have high metal contents in Peru (see Section 2.3.1).
Table S8 shows the metal concentrations of all other food/medicinal categories, including products below (4 analyses, 4%) and above (12 analyses, 13%) the WHO standards, and those currently not regulated (77 analyses, 83%) (see Section 2.1 for more details), with Pb and Cd being above the norm for most analyses done in lichen and fungi.
Figure 8 left illustrates the nationwide statistical distribution of metal concentrations, while Figure S6 shows the mean of all metals considered in this review under other food categories, with Pb (29%), Cd (25%), Cr (12%), Ni (13%), Hg (11%), As (8%), Al (2%), and Se (1%) being the contaminants that have been documented in Peru. Clearly, Al (nationwide mean of 67.7 mg/kg), Cr (6.1 mg/kg), Ni (2.4 mg/kg), and Pb (5.5 mg/kg) represent a high risk for consumers, as they all present high national averages. Similarly, statistical differences include lower Cd in eggs relative to other categories and more Pb in lichen and fungi relative to the other categories. Further statistical comparisons were unreliable due to the small data set size.
However, it is important to keep in mind that only Pb is regulated under international WHO standards for this food category (Table S2), and even though some metals found in Peru are reported in lower concentrations (less than 1 mg/kg, Figure 8 left), they still might be harmful to humans. Moreover, it is concerning that one of the most popular food types in Peru—chicken-based food products—have only been studied in a handful of regions (see Figure 8 (right)), suggesting that in addition to evaluating metal content in bird meat, further studies should investigate metal contents in other regions of the country.

3. Conclusions

This extensive literature search provides for the first time a complete database of metal bioaccumulation in food/medicinal products that are normally consumed in Peru, representing the starting point for further research on this important topic. Similarly, the study provides solid fundaments to create a better regulatory system that can lead to safer diet for locals, also ensuring the avoidance of future exporting penalties from Peruvian producers in the international markets.
This review represents an important contribution to the English literature on what has been reported in Spanish in terms of metal presence and bioaccumulation in Peruvian food/medicinal products. An extensive literature search from 231 scientific publications shows that Peruvian food/medicinal products normally consumed in the country can have high concentrations of metals due to bioaccumulation, which could result in health issues. In fact, this review reveals that metal concentrations reported in Peru are in many cases much higher than what has been reported elsewhere. Even though a small fraction of analyses showed metal concentration below MPLs, the biggest concern is the fact that most metals and products being consumed are not included in the WHO’s advisory lists, suggesting the urgent need for stronger regulations to ensure the safety of locals in Peru.
Some regions within the country and some food products are notably a problem that needs to be addressed. There is a clear lack of investigations in terms of spatial distribution, metals involved, and species evaluated, with popular protein sources such as meat from cuy, chicken, and pork as good examples. Similarly, though certain common metals are highly present, other metals that are also toxic and are not included in any international standard system need to be regulated. Out of 1907 documented analyses and 239 species investigated, the results show that the majority (63%) of nationwide metal bioaccumulation has been evaluated in plant-based food/medicinal products followed by fish (15%), macroinvertebrates and mollusks (11%), mammals (6%), and other categories (5%).

Recommendations

Despite the clear inconsistency among the international standard systems (in terms of metals considered and food categorization), the results suggest that the country needs to use the information from these other regulatory and advisory bodies to tailor and specify country-specific regulations that protect the health and well-being of its citizens and to consider routes of exposure and local food stock (e.g., alpaca) that might not be captured in other regions.
The results also indicate the need to replicate this study for metal bioaccumulation in other sources, such as animal feed, to understand how those affect metal concentration in animals that people consume at a national level. Similarly, more research should focus on how river water quality and anthropic activities can affect metal bioaccumulation in locally grown food products as well as consider the findings of the Peruvian private educational sector.

Supplementary Materials

References [164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356] are cited in the Supplementary Materials. The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/foods13050762/s1, Figure S1: Mean metal concentration documented in Peruvian plant-derived food/medicinal products. Green numbers indicate the quantity of analyses that considered a given metal, while red numbers indicate standard deviation. WHO standards aren’t displayed because they are specific to the food/medicinal type. Figure S2: Mean metal concentration documented in Peruvian fish-derived food/medicinal product. Green numbers indicate the quantity of analyses that considered a given metal, while red numbers indicate standard deviation. WHO standards aren’t displayed because they are specific to the food/medicinal type. Figure S3: Mean metal concentration documented in Peruvian fish-derived food/medicinal product, separated unto river and ocean species. Green numbers indicate the quantity of analyses that considered a given metal, while red numbers indicate standard deviation. WHO standards aren’t displayed because they are specific to the food/medicinal type. Figure S4: Mean of each metal documented in Peruvian macroinvertebrates and mollusks. Green numbers indicate the quantity of analyses that considered a given metal. WHO standards aren’t displayed because they are specific to the food/medicinal type. Figure S5: Mean of each metal documented in Peruvian mammals. Green numbers indicate the quantity of analyses that considered a given metal. WHO standards aren’t displayed because they are specific to the food/medicinal type. Figure S6: Mean of each metal documented under other food categories in Peru. Green numbers indicate the quantity of analyses that considered a given metal, while red numbers indicate standard deviation. WHO standards aren’t displayed because they are specific to the food/medicinal type. Table S1: Scientific literature published in English journals (up to 2022). Table S2: Maximum permissible limits (MPLs) of different food/medicinal types, under the World Health Organization’s (Codex Alimentarious) standards. Table S3: Number of publications from each research institution considered in this review, for each food/medicinal category. Unlisted institutions did not have any publications. Table S4: Maximum metal concentrations of each plant-based edible/medicinal product found in Peruvian studies. Table S5: Maximum metal concentrations of each fish-based edible/medicinal product found in Peruvian studies. Table S6: Maximum metal concentrations of each macroinvertebrate- and mollusk-based edible/medicinal product found in Peruvian studies. Table S7: Maximum metal concentrations of each mammal-based edible/medicinal product found in Peruvian studies. Table S8: Maximum metal concentrations of each other types of edible/medicinal product found in Peruvian studies.

Author Contributions

Conceptualization, T.R.T.-P., P.A.G.-C. and J.T.-Q.; methodology, T.R.T.-P., P.A.G.-C., J.T.-Q., J.O.S. and J.E.M.; validation, G.M., K.M., L.M.-P., G.R.-M., A.A.-R., G.V., J.O.S. and J.E.M.; formal analysis, T.R.T.-P., P.A.G.-C., J.T.-Q., G.M., K.M., L.M.-P., G.R.-M., A.A.-R. and G.V.; investigation, T.R.T.-P., P.A.G.-C. and J.T.-Q.; resources, G.M., L.M.-P., J.O.S. and J.E.M.; data curation, T.R.T.-P., P.A.G.-C. and J.T.-Q.; writing—original draft preparation, T.R.T.-P., P.A.G.-C., J.T.-Q., G.M., K.M., L.M.-P., G.R.-M., A.A.-R. and G.V.; writing—review and editing, G.V., J.O.S. and J.E.M.; visualization, G.M., L.M.-P., J.O.S. and J.E.M.; supervision, P.A.G.-C., J.O.S. and J.E.M.; project administration, G.M., L.M.-P., J.O.S. and J.E.M.; funding acquisition, G.M., L.M.-P., J.O.S. and J.E.M. All authors have read and agreed to the published version of the manuscript.

Funding

Funding for this project was provided in part by the Center for Mining Sustainability, a joint venture between the Universidad Nacional San Agustin (Arequipa, Peru) and the Colorado School of Mines (USA).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors are thankful for the constant support from Henry Polanco, Paul Santi, and Cesar Carbajal towards the development of this research. Similarly, The authors thank the many Peruvian students who wrote theses that contributed specific data as synthesized in this report.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

World Health Organization, Codex AlimentariusWHO
Maximum Permissible LimitMPL
Metal(loid)sMetals
Southern Common Market (Mercado Común del Sur)MERCOSUR
European UnionEU
MercuryHg
MethylmercuryCH3Hg
AluminumAl
StrontiumSb
ArsenicAs
BariumBa
BerylliumBe
CadmiumCd
ChromiumCr
TinSn
NickelNi
GoldAg
LeadPb
SeleniumSe
ThalliumTl
TitaniumTi
UraniumU

References

  1. Ministerio de Comercio Exterior y Turismo. 2023. Resultados de Exportaciones Perú 2022. Available online: https://recursos.exportemos.pe/resultados-exportaciones-peru-2022.pdf (accessed on 13 December 2023).
  2. Gestión. 2022. UE Rechazó un Contenedor de Palta Hass de Perú Por Tener un Alto Nivel de cadmio. Available online: https://gestion.pe/economia/ue-rechazo-un-contenedor-de-palta-hass-de-peru-por-tener-un-alto-nivel-de-cadmio-noticia/ (accessed on 20 June 2023).
  3. European Commission. Announcements. Available online: https://webgate.ec.europa.eu/ (accessed on 23 January 2024).
  4. Chirinos-Peinado, D.; Castro-Bedrinana, J.; Rios-Rios, E.; Mamani-Gamarra, G.; Quijada-Caro, E.; Huacho-Jurado, A.; Nunez-Rojas, W. Lead and Cadmium Bioaccumulation in Fresh Cow’s Milk in an Intermediate Area of the Central Andes of Peru and Risk to Human Health. Toxics 2022, 10, 317. [Google Scholar] [CrossRef]
  5. Hoyle, B. Bioaccumulation. In The Gale Encyclopedia of Science; Nemeh, K.H., Longe, J.L., Eds.; Hardvard University Press: Farmington Hills, MI, USA, 2021; pp. 557–558. [Google Scholar]
  6. Condori, R. Niveles de plomo y arsénico en leche y pelo de vacas lecheras en el valle de Moquegua. Rev. De Investig. Agropecu. Sci. Biotechnol. 2021, 1, 10–19. [Google Scholar] [CrossRef]
  7. Zapata, F.; Villanueva, M.; Esquivel, R.; Payano, I. Bioaccumulation of heavy metals in Oncorhynchus mykiss for export at production centers in the Peruvian Central Highlands. Rev. Ambiente Água 2017, 12, 527–542. [Google Scholar] [CrossRef]
  8. Gutleb, A.; Helsberg, A.; Mitchell, C. Heavy Metal Concentrations in Fish from a Pristine Rainforest Valley in Peru: A Baseline Study before the Start of Oil-Drilling Activities. Bull. Environ. Contam. Toxicol. 2002, 69, 523–529. [Google Scholar] [CrossRef]
  9. Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
  10. Skalny, A.; Aschner, M.; Sekacheva, M.; Santamaria, A.; Barbosa, F.; Ferrer, B.; Aaseth, J.; Paoliello, M.; Rocha, J.; Tinkov, A. Mercury and cancer: Where are we now after two decades of research. Food Chem. Toxicol. 2022, 164, 113001. [Google Scholar] [CrossRef] [PubMed]
  11. Dos Santos, A.; Chang, L.; Liejun Guo, G.; Aschner, M. Chapter 35—Fetal Minamata disease: A human episode of congenital methylmercury poisoning. In Handbook of Developmental Neurotoxicology, 2nd ed.; Slikker, W., Paule, M., Wang, C., Eds.; Academic Press: London, UK, 2018; pp. 399–406. [Google Scholar]
  12. Zhang, C.; Gan, C.; Ding, L.; Xiong, M.; Zhang, A.; Li, P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol. Environ. Saf. 2020, 189, 109987. [Google Scholar] [CrossRef] [PubMed]
  13. Suhair, O.; Muhamad, M.; Te Chuan, L.; Hadibarata, T.; Teh, Z. A Review on Lead Sources, Occurrences, Health Effects, and Treatment Using Hydroxyapatite (HAp) Adsorbent Made from Fish Waste. Water Air Soil Pollut. 2019, 230, 12. [Google Scholar] [CrossRef]
  14. Assi, M.A.; Hezmee, M.N.M.; Haron, A.W.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660. [Google Scholar] [CrossRef] [PubMed]
  15. Jusko, T.A.; Henderson, C.R.; Lanphear, B.P.; Cory-Slechta, D.A.; Parsons, P.J.; Canfield, R.L. Blood lead concentration < 10 μg/dL and child intelligence at 6 years of age. Environ. Health Perspect. 2008, 116, 243–248. [Google Scholar] [PubMed]
  16. Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead exposure and cardiovascular disease—A systematic review. Environ. Health Perspect. 2007, 115, 472–482. [Google Scholar] [CrossRef] [PubMed]
  17. Boskabady, M.; Tabatabai, S.; Farkhondeh, T. Inhaled lead affects lung pathology and inflammation in sensitized and control Guinea pigs. Environ. Toxicol. 2016, 31, 452–460. [Google Scholar] [CrossRef]
  18. Pavesi, T.; Moreira, J. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol. 2020, 40, 1183–1197. [Google Scholar] [CrossRef]
  19. Fay, M.; Alt, L.; Ryba, D.; Salamah, R.; Peach, R.; Papaeliou, A. Cadmium nephrotoxicity is associated with altered microRNA expression in the rat renal cortex. Toxics 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
  20. Mridha, D.; Ray, I.; Sarkar, J.; De, A.; Joardar, M.; Das, A.; Chowdhury, N.; Acharya, K.; Roychowdhury, T. Effect of sulfate application on inhibition of arsenic bioaccumulation in rice (Oryza sativa L.) with consequent health risk assessment of cooked rice arsenic on human: A pot to plate study. Environ. Pollut. 2022, 293, 118561. [Google Scholar] [CrossRef] [PubMed]
  21. Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; Van Thriel, C.; Drexler, H. The Health Effects of Aluminum Exposure. Dtsch. Ärzteblatt Int. 2017, 114, 653–659. [Google Scholar] [CrossRef]
  22. Ministerio de Desarrollo Agrario y Riego. Anuario Estadístico de Comercio Exterior Agrario 2021. Dirección General de Estadísticas, Seguimiento y Evaluación de Políticas. Dirección de Estadísticas e Información Agraria. 2022. Available online: https://siea.midagri.gob.pe/portal/phocadownload/datos_estadisticas/anuarios/comercio_exterior/comercio_exterior_2021.pdf (accessed on 10 January 2024).
  23. Arnold, S.; Parker, J.; Bloom, N.; Aufderheide, A.; Middaugh, J. Mercury in Ancient Mummy Hair from Peru, Chile, and Egypt—Evidence of Pre-Industrial Naturally Occurring Dietary Exposure May 22, 2018. Available online: http://dhss.alaska.gov/dph/Epi/eph/Documents/biom/Mummy%20Mercury%20Study.2018.pdf (accessed on 29 September 2020).
  24. Langeland, A.; Hardin, R.; Neitzel, R. Mercury Levels in Human Hair and Farmed Fish near Artisanal and Small-Scale Gold Mining Communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health 2017, 14, 302. [Google Scholar] [CrossRef]
  25. Weinhouse, C.; Gallis, J.A.; Ortiz, E.; Berky, A.J.; Morales, A.M.; Diringer, S.E.; Harrington, J.; Bullins, P.; Rogers, L.; Hare-Grogg, J.; et al. A population-based mercury exposure assessment near an artisanal and small-scale gold mining site in the Peruvian Amazon. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 126–136. [Google Scholar] [CrossRef]
  26. Biffi, D.; López-Mobilia, A.; Kelez, S.; Williams, D.A.; Chumchal, M.M.; Weinburgh, M. Mislabelling and high mercury content hampers the efforts of market-based seafood initiatives in Peru. Sci. Rep. 2020, 10, 20390. [Google Scholar] [CrossRef]
  27. Herrera-Perez, M.; Méndez, N. Efecto del cadmio sobre la mortalidad de adultos de Polydora sp. (Polychaeta: Spionidae) en el laboratorio. Rev. Biol. Trop. 2019, 67, 110–118. [Google Scholar] [CrossRef]
  28. Custodio, M.; Cuadrado, W.; Penaloza, R.; Montalvo, R.; Ochoa, S.; Quispe, J. Human Risk from Exposure to Heavy Metals and Arsenic in Water from Rivers with Mining Influence in the Central Andes of Peru. Water 2020, 12, 1946. [Google Scholar] [CrossRef]
  29. Custodio, M.; Espinoza, C.; Orellana, E.; Chanamé, F.; Fow, A.; Peñaloza, R. Assessment of toxic metal contamination, distribution and risk in the sediments from lagoons used for fish farming in the central region of Peru. Toxicol. Rep. 2022, 9, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
  30. Molloy, J.; Rodbell, D.; Gillikin, D.; Hollocher, K. Citizen science campaign reveals widespread fallout of contaminated dust from mining activities in the central Peruvian Andes. Geology 2020, 48, 678–682. [Google Scholar] [CrossRef]
  31. Gerson, J.; Szponar, N.; Zambrano, A.; Bergquist, B.; Broadbent, E.; Driscoll, C.T.; Erkenswick, G.; Evers, D.; Fernandez, L.; Hsu-Kim, H.; et al. Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat. Commun. 2022, 13, 559. [Google Scholar] [CrossRef] [PubMed]
  32. Ramírez, A.V. Intoxicación ocupacional por mercurio. An. De La Fac. De Med. 2008, 69, 46–51. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832008000100010&lng=es&tlng=es (accessed on 28 December 2023). [CrossRef]
  33. ATSDR. Agencia Para Sustancias Tóxicas y el Registro de Enfermedades. Available online: https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts101.html (accessed on 28 December 2023).
  34. Walton, J.R. Bioavailable aluminum: Its effects on human health. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2011; pp. 331–342. [Google Scholar]
  35. Lai, Z.; He, M.; Lin, C.; Ouyang, W.; Liu, X. Interactions of antimony with biomolecules and its effects on human health. Ecotoxicol. Environ. Saf. 2022, 233, 113317. [Google Scholar] [CrossRef]
  36. Rodríguez-Heredia, D. Intoxicación ocupacional por metales pesados. Medisan 2017, 21, 3372–3385. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192017001200012 (accessed on 28 December 2023).
  37. Demissie, S.; Mekonen, S.; Awoke, T.; Teshome, B.; Mengistie, B. Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study. Toxicol. Rep. 2024, 12, 100–110. [Google Scholar] [CrossRef]
  38. Riaz, R.; Murtaza, G.; Farooqi, Z.; Ali, S.; Aziz, H.; Mahboob, S.; Al-Ghanim, K.; Owens, G.; Ahmad, H.; Riaz, U. Assessment of arsenic contamination in groundwater and associated human health risk. Sustainability 2022, 14, 12460. [Google Scholar] [CrossRef]
  39. Toledo, M.; Lee, J.; Batista, B.; Olympio, K.; Nardocci, A. Exposure to inorganic arsenic in rice in Brazil: A human health risk assessment. Int. J. Environ. Res. Public Health 2022, 19, 16460. [Google Scholar] [CrossRef] [PubMed]
  40. Organización Mundial de la Salud Para el Programa Internacional de Seguridad de las Sustancias Química. Bario Guía para la Salud y la Seguridad. Centro Panamericano de Ecología Humana y Salud División de Salud y Ambiente Metepec, Estado de México, México. 1995. Available online: http://cidbimena.desastres.hn/docum/crid/Junio2006/CD2/pdf/spa/doc10817/doc10817-contenido.pdf (accessed on 28 September 2023).
  41. Krishan, G.; Ghosh, S.; Virk, H. Arsenic pollution and associated human health hazards in Rupnagar district, Punjab, India. Environ. Sci. Pollut. Res. 2023, 30, 69258–69273. [Google Scholar] [CrossRef]
  42. Londoño-Franco, L.F.; Londoño-Muñoz, P.T.; Muñoz-García, F. Los riesgos de los metales pesados en la salud humana y animal. Biotecnol. Sect. Agropecu. Agroind. 2016, 14, 145–153. [Google Scholar] [CrossRef]
  43. Müller, F.; Cyster, L.; Raitt, L.; Aalbers, J. The effects of tin (Sn) additions on the growth of spinach plants. Int. J. Exp. Bot. 2015, 84, 461–465. [Google Scholar] [CrossRef]
  44. Yap, C.K.; Al-Mutairi, K.A. Comparative study of potentially toxic nickel and their potential human health risks in seafood (fish and mollusks) from Peninsular Malaysia. Biology 2022, 11, 376. [Google Scholar] [CrossRef]
  45. Yang, Y.F.; Wang, W.M.; Chen, C.Y.; Lu, T.H.; Liao, C.M. Assessing human exposure risk and lung disease burden posed by airborne silver nanoparticles emitted by consumer spray products. Int. J. Nanomed. 2019, 14, 1687–1703. [Google Scholar] [CrossRef]
  46. Poma, P.A. Intoxicación por plomo en humanos. An. Fac. Med. 2008, 69, 120–126. Available online: http://www.scielo.org.pe/scielo.php?pid=S1025-55832008000200011&script=sci_abstract (accessed on 28 December 2023). [CrossRef]
  47. Collin, M.; Venkatraman, S.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.; Stacey, R.; Swamiappan, S. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
  48. Witczak, A.; Pokorska-Niewiada, K.; Tomza-Marciniak, A.; Witczak, G.; Cybulski, J.; Aftyka, A. The problem of selenium for human health—Removal of selenium from water and wastewater. Water 2023, 15, 2230. [Google Scholar] [CrossRef]
  49. Gascó Coscojuela, N.; Martínez Delgado, Y.; Collado Nieto, S.; Junyent Iglesias, E.; Pascual Santos, J. Caso clínico: Intoxicación aguda por Talio: Hemodiálisis diaria de bajo flujo vs alto flujo. Enfermería Nefrológica 2017, 20 (Suppl. S1), 10–20. [Google Scholar]
  50. Heringa, M.B.; Peters, R.J.B.; Bleys, R.L.A.W.; van der Lee, M.K.; Tromp, P.C.; van Kesteren, P.C.E.; van Eijkeren, J.C.H.; Undas, A.K.; Oomen, A.G.; Bouwmeester, H. Detection of titanium particles in human liver and spleen and possible health implications. Part. Fibre Toxicol. 2018, 15, 15. [Google Scholar] [CrossRef] [PubMed]
  51. Sánchez Ocampo, A.; Jimenez Reyes, M.; Torres Pérez, J.; López Castañares, R.; Olea Cardoso, O. Efectos tóxicos y radioactivos del uranio. Cienc. Ergo Sum 1998, 5, 312–318. [Google Scholar]
  52. Balaram, V.; Rani, A.; Rathore, D.P.S. Uranium in groundwater in parts of India and world: A comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosyst. Geoenviron. 2022, 1, 100043. [Google Scholar] [CrossRef]
  53. Galagarza, O.; Ramirez-Hernandez, A.; Oliver, H.; Álvarez Rodríguez, M.; Valdez, M.; Pachari, E.; Cereceda, Y.; Diaz-Valencia, Y.; Deering, A. Occurrence of Chemical Contaminants in Peruvian Produce: A food-safety perspective. Foods 2021, 10, 1461. [Google Scholar] [CrossRef]
  54. Calderon, E.L.; Calderon, P.D. Concentración de Metales Pesados en Hortalizas que se Comercializan en el Mercado Modelo de Piura. Revista en Internet, Departamento Académico de Ingeniería Química, Universidad Nacional de Piura, Perú. 2002. Available online: http://www.unp.edu.pe/institutos/iipd/trabajosinvestigacion/NUEVOS%20TRABAJOS%20A%20PUBLICAR/MINAS/Trabajo%20de%20Investigacion-Esther%20calderon2.docx (accessed on 18 January 2024).
  55. Madueño, F.; García, M. Determinación de metales pesados (Plomo y Cadmio) en lechuga (Lactuca sativa) de mercados de Lima Metropolitana. Cienc. Investig. 2018, 21, 19–23. [Google Scholar]
  56. Calderon, E.L.; Concha, R. Evaluación de las Concentraciones de Metales Pesados Para Determinar la Calidad de Frutas de Consumo Masivo en la Ciudad de Piura. Online Article, Departamento Académico de Ingeniería Química, Universidad Nacional de Piura, Peru. 2012. Available online: http://www.unp.edu.pe/institutos/iipd/trabajosinvestigacion/facultadminasquimica-esthercalderon.pdf (accessed on 18 January 2024).
  57. Custodio, M.; Peñaloza, R.; Orellana, E.; Aguilar-Cáceres, M.A.; Maldonado-Oré, E.M. Heavy metals and arsenic in soil and cereal grains and potential human risk in the central region of Peru. J. Ecol. Eng. 2021, 22, 206–220. [Google Scholar] [CrossRef]
  58. Zug, K.L.M.; Huamaní-Yupanqui, H.A.; Meyberg, F.; Cierjacks, J.S.; Cierjacks, A. Cadmium accumulation in Peruvian cacao (Theobroma cacao L.) and opportunities for mitigation. Water Air Soil Pollut. 2019, 230, 72. [Google Scholar] [CrossRef]
  59. Arévalo-Gardini, E.; Arévalo-Hernández, C.O.; Baligar, V.C.; He, Z.L. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci. Total Environ. 2017, 605–606, 792–800. [Google Scholar] [CrossRef] [PubMed]
  60. Rosales-Huamani, J.A.; Breña-Ore, J.L.; Sespedes-Varkarsel, S.; Huamanchumo de la Cuba, L.; Centeno-Rojas, L.; Otiniano-Zavala, A.; Andrade-Choque, J.; Valverde-Espinoza, S.; Castillo-Sequera, J.L. Study to determine levels of cadmium in cocoa crops applied to inland areas of Peru: “The case of the Campo Verde-Honoria Tournavista corridor”. Agronomy 2020, 10, 1576. [Google Scholar] [CrossRef]
  61. Soto-Benavente, M.; Rodriguez-Achata, L.; Olivera, M.; Arostegui-Sanchez, V.; Colina-Nano, C.; Garate-Quispe, J. Riesgos para la salud por metales pesados en productos agrícolas cultivados en áreas abandonadas por la minería aurífera en la Amazonía peruana. Sci. Agropecu. 2020, 11, 49–59. [Google Scholar] [CrossRef]
  62. De la O-Valenzuela, Z.O.; Quispe-Aguirre, J.; Cardenas-Orihuela, R.A. Determinación Cuantitativa de Plomo y Cadmio en Diez Tipos de Yuca (Manihot esculenta) Comercializadas en el Mercado del Distrito de San Martin de Pangoa, de la Ciudad de Satipo, Departamento de Junin, de Enero a Marzo de 2017. Bachelor’s Thesis, Facultad de Farmacia y Bioquimica, Universidad Wiener, Arequipa, Peru, 2017. Available online: http://repositorio.uwiener.edu.pe/handle/123456789/1187 (accessed on 18 January 2024).
  63. Quispe-Cruz, N.M.; Paredes de Gómez, T.B. Evaluacion del Riesgo de Toxicidad a Través de Contaminantes en Cultivos Agricolas de Tallo Corto en la Cuenca Media Quilca-Vitor-Chili, Los Tunales Tiabaya. Bachelor’s Thesis, Facultad Ingenieria de Procesos, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2019. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/10804 (accessed on 18 January 2024).
  64. Román-Ochoa, Y.; Delgado, G.T.; Tejada, T.R.; Yucra, H.R.; Durand, A.E.; Hamaker, B.R. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere 2021, 274, 129792. [Google Scholar] [CrossRef]
  65. Juan de Dios-Miranda, M.K. Niveles de Arsénico y Cadmio en Muestras de Cebolla (Allium Cepa) Expendidas en la Ciudad de Lima. Bachelor’s Thesis, Facultad de Farmacia y Bioquimica, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2018. Available online: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/8873 (accessed on 18 January 2024).
  66. López, D.L.; García, O.M.; Madueño, V.F.; Bautista, C.N.; Marín, V.G.; Olórtegui, C.D. Metales pesados en tres variedades de Solanum tuberosum L. (papa) expendidos en el mercado mayorista de Santa Anita (Lima-Peru). Cienc. Investig. 2020, 23, 25–30. [Google Scholar] [CrossRef]
  67. Luna-Arenas, R.N.; Rodríguez-Lozada, V.A.; Lizano-Gutiérrez, J.V. Determinación de las Concentraciones de Cadmio y Plomo en papa (Solanum Tuberosum) Cosechada en las Cuencas de los ríos Mashcón y Chonta–Cajamarca. Bachelor’s Thesis, Facultad de Farmacia y Bioquimica, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2016. Available online: https://cybertesis.unmsm.edu.pe/handle/20.500.12672/4678 (accessed on 18 January 2024).
  68. Orellana, E.; Bastos, M.C.; Cuadrado, W.; Zárate, R.; Sarapura, V.; Yallico, L.; Tabra, F.; Bao, D. Heavy metals in native potato and health risk assessment in highland Andean zones of Junin, Peru. J. Environ. Prot. 2020, 11, 921–937. [Google Scholar] [CrossRef]
  69. Mondal, D.; Periche, R.; Tineo, B.; Bermejo, L.A.; Rahman, M.M.; Siddique, A.B.; Rahman, M.A.; Solis, J.L.; Cruz, G. Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. Chemosphere 2020, 241, 125070. [Google Scholar] [CrossRef]
  70. JMP®, Version 17.2.0.; SAS Institute Inc.: Cary, NC, USA, 1989–2023.
  71. Toyooka, T.; Koda, S. Management of occupational health for adverse health effects of beryllium and its compounds in workplaces—Recent trends and issues in Japan. Sangyō Eiseigaku Zasshi 2021, 63, 31–42. [Google Scholar] [CrossRef]
  72. Cowgill, U.M. The chemical composition of bananas market basket values, 1968–1980. Biol. Trace Elem. Res. 1981, 3, 33–54. [Google Scholar] [CrossRef]
  73. Wolnik, K.; Fricke, F.; Gaston, C. Quality assurance in the elemental analysis of foods by inductively coupled plasma spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 1984, 39, 649–655. [Google Scholar] [CrossRef]
  74. Saribal, D. ICP-MS analysis of trace element concentrations in cow’s milk samples from supermarkets in Istanbul, Turkey. Biol. Trace Elem. Res. 2019, 193, 166–173. [Google Scholar] [CrossRef] [PubMed]
  75. ATSDR. Toxycological Profile for Beryllium; Agency for Toxic Substances and Disease Registry. Department of Health and Human Services: Atlanta, GA, USA, 2022. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp4.pdf (accessed on 28 December 2023).
  76. Carpio, B.O. Contaminación por Metales Pesados en Macrófitas de los Principales Ríos Tributarios del Lago Titicaca. Ph.D. Thesis, National University of the Altiplano, Puno, Peru, 2016. [Google Scholar]
  77. Huancaré, R.K. Identificación Histopatológica de Lesiones Inducidas por Bioacumulación de Metales Pesados en Branquias, Hígado y Músculo de Trucha Arcoiris (Oncorhynchus Mykiss) de Cultivo en Etapa Comercial de la Laguna de Mamacocha, área de Influencia Minera, Cajamarca-Perú. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2014. [Google Scholar]
  78. Acosta, O.N. Cuantificación de Acumulación de Metales Pesados Debido a Factores físico-Químicos en la Producción de Carne de Trucha Cultivada en Jaulas Flotantes Caso: Laguna Lagunillas, Lampa–Puno. Master’s Thesis, National University of San Agustín, Arequipa, Peru, 2020. [Google Scholar]
  79. Winde, F. Uranium pollution of the Wonderfonteinspruit, 1997–2008 part 1: Uranium toxicity, regional background and mining-related sources of uranium pollution. Water SA 2010, 36, 239–256. Available online: https://www.ajol.info/index.php/wsa/article/view/210847 (accessed on 28 December 2023).
  80. SUNEDU. Universidades Privadas del Perú. 2023. Available online: https://www.sunedu.gob.pe/universidades-privadas/ (accessed on 26 October 2023).
  81. Delgado, Y. Efecto del Cadmio en el Crecimiento de Plántulas de Lupinus Mutabilis “Chocho”. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2014. [Google Scholar]
  82. Fernandez, A. Identificación de Especies Vegetales Nativas Acumuladoras de Cadmio en el Caserío de Picuruyacu Alto, Distrito de Castillo Grande, Provincia de Leoncio Prado, Departamento de Huánuco. Bachelor’s Thesis, National University Agraria de la Selva, Huánuco, Peru, 2019. [Google Scholar]
  83. Camas, D.; Valqui, X. Evaluación de la Concentración de Cadmio en Áreas de Cultivo de Papa (Solanum Tuberosum sp.) de la Localidad Cohechán, Distrito de Conila, Provincia de Luya, Departamento Amazonas–2016. Bachelor’s Thesis, Toribio Rodríguez of Mendoza of Amazonas National University, Chachapoyas, Peru, 2016. [Google Scholar]
  84. Rodríguez, K. Biorremediación Mediante Trichoderma spp., Pseudomonas Fluorescens y Bacillus Subtilis para Reducir Concentraciones de Cadmio en Espárrago. Bachelor’s Thesis, National University Agraria La Molina, Lima, Peru, 2022. [Google Scholar]
  85. Flores, R. Efectos Adversos de Metales Pesados en la Agricultura de la Cuenca Baja del río Huaura Provincia Huaura. Ph.D. Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  86. De La Cruz, C. Niveles de Contenido de Plomo y Zinc en Órganos no Reproductivos de Polylepis sp. en Tres Localidades de Pasco. Ph.D. Thesis, National University of Central Peru, Huancayo, Peru, 2021. [Google Scholar]
  87. Dextre, A. Acumulación de Metales Pesados en Senecio rufescens DC. en dos Lagunas Altoandinas de las Regiones de Lima y Junín, Perú. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2017. [Google Scholar]
  88. Cobeña, E. Plomo en árboles como Indicador de Polución Ambiental. Master’s Thesis, National University of Engineering, Rímac District, Peru, 2014. [Google Scholar]
  89. García, J. Selección por Hipoacumulación de Metales Pesados en Órganos Vegetativos y Reproductivos de Clones de Cacao (Theobroma cacao L.) en la Estación Tulumayo. Bachelor’s Thesis, National Agrarian University of the Jungle, TingoMaria, Peru, 2018. [Google Scholar]
  90. OEFA (Organismo de Evaluación y Fiscalización Ambiental). Informe N° 078-2017-OEFA/DE/SDCA-CMVA. Available online: https://repositorio.oefa.gob.pe/handle/20.500.12788/100?show=full (accessed on 28 December 2023).
  91. Rahman, M.; Owens, G.; Naidu, R. Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh—Implications to groundwater irrigation. Environ. Geochem. Health 2009, 31, 179–187. [Google Scholar] [CrossRef] [PubMed]
  92. Morales, A.P. Absorción y Acumulación de Metales Pesados en las Especies Distichia muscoides y Juncus articus Willd en el Humedal Uquián, Canrey Chico-Recuay–Ancash en el Periodo Agosto 2018–Marzo 2019. Bachelor’s Thesis, Santiago Antúnez de Mayolo National University, Huaraz, Peru, 2019. [Google Scholar]
  93. Olortegui, A. Concentración de Metales de la Especie Vegetal Aspidosperma Rigidum (Remocaspi) y su Relación con el Suelo Donde Crece en Nina Rumi y Puerto Almendra. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2021. [Google Scholar]
  94. Medina, C.; Taminche, S. Evaluación de Metales en la Corteza de Campsiandra Angustifolia Spruce Ex Benth. “Huacapurana” de uso Etnoterapéutico en la Región Loreto. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2015. [Google Scholar]
  95. Flores, M. Determinación del Contenido de Metales Pesados Tóxicos en Almendras de Cacao (Theobroma cacao L.) en el Distrito de Kimbiri a 739 msnm–Cusco. Bachelor’s Thesis, National University San Cristóbal de Huamanga, Ayacucho, Peru, 2021. [Google Scholar]
  96. Huguet, R. Determinación Cuantitativa de Metales Pesados en Cinco Especies Vegetales en Bolsas Filtrantes Para Infusiones Expendidas en Lima Metropolitana–2013. Master’s Thesis, National University of San Marcos, Lima, Peru, 2014. [Google Scholar]
  97. Rosas, J.L. Evaluación de la Bioacumulación de Metales Pesados en Sarcocornia fruticosa (l.) A. J. Scott 1977 en el Área de Conservación Regional Humedales de Ventanilla, región Callao, Perú. Bachelor’s Thesis, Federico Villarreal National University, San Miguel, Peru, 2021. [Google Scholar]
  98. Huanri, J.E. Determinación de Plomo y Arsénico en Jugo de Caña de Azúcar (Saccharum officinarum) por Espectroscopía de Absorción Atómica en Lima Metropolitana. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2014. [Google Scholar]
  99. Calloapaza, C. Concentración de Metales en el Suelo y su Relación con el Contenido en Manihot Esculenta (yuca) Cultivada de la Zona de Puerto Almendra Nina Rumi, Loreto. Ph.D. Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2022. [Google Scholar]
  100. Oc Llatance, W.; Gonza, C.; Guzmán, W.; Pariente, E. Bioacumulación de cadmio en el cacao (Theobroma cacao) en la Comunidad Nativa de Pakun, Perú. For. Mag. Peru Natl. Univ. Agrar. La Molina Lima-Peru 2018, 33, 63–75. [Google Scholar] [CrossRef]
  101. Choque, F. Uso de las Aguas Residuales del río Huatanay en el Cultivo de Cilantro (Coriandrum sativum L.) Saylla–Cusco. Bachelor’s Thesis, National University of San Antonio Abad del Cusco, Cusco, Peru, 2020. [Google Scholar]
  102. Panduro, N. Dinámica de la Absorción de los Nutrientes y Metales Pesados en la Biomasa Estacional del Cultivo de camu camu (Myrciaria dubia HBK), en un Entisols de Yarinacocha. Master’s Thesis, National Agrarian University of the Jungle, Tingo Maria, Peru, 2015. [Google Scholar]
  103. Guerrero, A.; Hoyos, M. Bioacumulación de Plomo y Cadmio en Brassica oleracea subsp. Capitata (L) Metzg. y Raphanus sativus L. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2015. [Google Scholar]
  104. Córdova, A. Efluentes de la Planta de Tratamiento de Aguas Residuales Totora y la Contaminación de las Hortalizas por Metales Pesados en la Comunidad de Totora-Ayacucho 2017–2018. Ph.D. Thesis, National University of Federico Villarreal, Lima, Peru, 2019. [Google Scholar]
  105. Falero, Y. Determinación de Metales Pesados Arsénico, Cadmio, Mercurio y Plomo en Banano Orgánico Producido en el Distrito de Buenos Aires, Valle Alto Piura–Morropón, Piura 2020. Bachelor’s Thesis, National University of Piura, Piura, Peru, 2021. [Google Scholar]
  106. Wiwanitkit, V. Cadmium related health effects. Environ. Res. 2012, 112, 236. [Google Scholar] [CrossRef]
  107. Morris, J.; Crane, S. Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients 2013, 5, 1024–1057. [Google Scholar] [CrossRef]
  108. MIDAGRI. Perú Tiene una Superficie Agrícola de 11.6 Millones de Hectáreas a Nivel Naciona. Available online: https://www.gob.pe/institucion/midagri/noticias/325509-midagri-peru-tiene-una-superficie-agricola-de-11-6-millones-de-hectareas-a-nivel-nacional (accessed on 23 September 2023).
  109. Tejada-Meza, K.; Arenazas-Rodríguez, A.; Garcia-Chevesich, P.A.; Flores-Farfan, C.; Morales-Paredes, L.; Romero-Mariscal, G.; Ticona-Quea, J.; Vanzin, G.; Sharp, J.O. Acute Ecotoxicity Potential of Untreated Tannery Wastewater Release in Arequipa, Southern Peru. Sustainability 2023, 15, 15240. [Google Scholar] [CrossRef]
  110. Bebbington, A.; Williams, M. Water and mining conflicts in Peru. Mt. Res. Dev. 2008, 28, 190–195. [Google Scholar] [CrossRef]
  111. Cooke, C.; Balcom, P.; Biester, H.; Wolfe, A. Over three millennia of mercury pollution in the Peruvian Andes. Proc. Natl. Acad. Sci. USA 2009, 106, 8830–8834. [Google Scholar] [CrossRef]
  112. Regis, A.; Vanneste, J.; Acker, S.; Martinez, G.; Quea, J.; Garcia, V.; Alejo, F.; Zea, J.; Krahenbuhl, R.; Vanzin, G.; et al. Pressure-driven membrane processes for boron and arsenic removal: pH and synergistic effects. Desalination 2022, 522, 115441. [Google Scholar] [CrossRef]
  113. Thomas, E.; Atkinson, R.; Zavaleta, D.; Rodriguez, C.; Lastra, S.; Yovera, F.; Arango, K.; Pezo, A.; Aguilar, J.; Tames, M.; et al. The distribution of cadmium in soil and cacao beans in Peru. Sci. Total Environ. 2023, 881, 163372. [Google Scholar] [CrossRef] [PubMed]
  114. Yang, Z.; Acker, S.; Brady, A.; Arenazas, A.; Morales, L.; Ticona, J.; Romero, G.; Vanzin, G.; Ranville, J.; Sharp, J. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. Sci. Total Environ. 2023, 876, 162478. [Google Scholar] [CrossRef] [PubMed]
  115. Rosales, E. Determinación de Metales Pesados en tres Especies de Peces en el Tramo Cachicoto–Monzón. Bachelor’s Thesis, National Agrarian University of the Selva, Tingo María, Peru, 2012. [Google Scholar]
  116. McEneff, G.; Quinn, B.; Bennion, M.; Dolan, S.; O’Rourke, K.; Morrison, L. Bioaccumulation of metals in juvenile rainbow trout (oncorhynchus mykiss) via dietary exposure to blue mussels. Chemosphere 2017, 188, 548–556. [Google Scholar] [CrossRef] [PubMed]
  117. Chanamé, F.C. Bioacumulación de Metales Pesados Procedentes de la Contaminación Minera y Metalúrgica en Tejidos de Oncorhynchus mykiss “Trucha arco Iris” de los Centros de Producción de la Provincia de Yauli–Junín. Ph.D. Thesis, National University of Trujillo, Trujillo Peru, 2009. [Google Scholar]
  118. Alves, L.C.; Glover, C.N.; Wood, C.M. Dietary Pb Accumulation in Juvenile Freshwater Rainbow Trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 2006, 51, 615–625. [Google Scholar] [CrossRef]
  119. Patiño, M. Determinación de Cadmio y Plomo en las Partes Anatómicas de la Trucha (Oncorhynchus mykiss) del río de Chalhuanca. Bachelor’s Thesis, Micaela Bastidas National University of Apurimac, Abancay, Peru, 2019. [Google Scholar]
  120. Rosales, E.; Cotrina, M.; Valdivieso, G.; Sales, F.; García, E.; Ordoñez, E. Bioacumulación de metales pesados en tres especies de peces bentónicos del Río Monzón Región Huánuco. Rev. Investig. Científica REBIOL 2019, 40, 69–78. [Google Scholar]
  121. Mariussen, E.; Heier, L.; Teien, H.; Pettersen, M.; Holth, T.; Salbu, B.; Rosseland, B. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range. Ecotoxicol. Environ. Saf. 2017, 135, 327–336. [Google Scholar] [CrossRef]
  122. Paz, O.A. Evaluación del mercurio en jurel proveniente de Matarani, Vila Vila e Ilo en Arequipa. Rev. Cienc. Desarro. 2013, 16, 46–58. [Google Scholar] [CrossRef]
  123. Ninaja, P.N. Determinación de los Niveles de Mercurio en los Pescados de Mayor Consumo Comercializados en los Mercados de Tacna, 2017. Bachelor’s Thesis, Jorge Basadre Grohmann National University, Tacna, Peru, 2020. [Google Scholar]
  124. Fernández, L.E.; González, V.H. Niveles del Mercurio en Peces de Madre de Dios; Ministerio del Ambiente: Madre de Dios, Peru, 2009. [Google Scholar]
  125. Lewis, T.; Garcia-Chevesich, P.; Wildeman, T.; Sharp, J. Changes in surface water quality from small-scale gold mining operations in the Surnamean rainforest. Toxicol. Environ. Chem. 2020, 102, 334–355. [Google Scholar] [CrossRef]
  126. Quispe, R.; Malone, A.; Smith, N.; García Zúñiga, F. Perceptions and realities of mercury contamination in a Peruvian artisanal and small-scale gold mining (ASGM) community. Environ. Res. 2022, 214, 114092. [Google Scholar] [CrossRef] [PubMed]
  127. Ramos Cáceres, K.N. Determinación de la Presencia de Cd, Pb, Hg, Al y As en Conservas de Thunnus (Atún), Arequipa-2016; Universidad Católica de Santa María: Arequipa, Peru, 2017. [Google Scholar]
  128. Andayesh, S.; Hadiani, M.R.; Mousavi, Z.; Shoeibi, S. Lead, cadmium, arsenic and mercury in canned tuna fish marketed in Tehran, Iran: Food additives & contaminants Part B. Surveill. Commun. 2015, 8, 93–98. [Google Scholar] [CrossRef]
  129. Zazouli, M.; Mehdinia, S.; Tabarinia, F.; Nasrollahpoor, D.; Tabarinia, H. Measurment and assessment of concentration of heavy metal (Hg, Cd, Pb) in canned tuna fish distributed in Mazandaran province of Iran in 2014–2015. Majallah-I ‘ilmī-I Dānishgāh-I ‘ulūm-I Pizishkī-I Simnān 2016, 18, 357–363. [Google Scholar]
  130. Hoyne, T.; Vieira, L.; Heringer, O.; Brandão, G.; de Souza, J.; Carneiro, M. Arsenic speciation in canned tuna fish samples (Thunnus) using ionic chromatography inductively coupled plasma mass spectrometry. J. Food Compos. Anal. 2023, 116, 105051. [Google Scholar] [CrossRef]
  131. Miglio, M.C. Biomagnificación de Metales en Predadores de Concha de Abanico A. purpuratus, en Concesiones de Acuicultura en Bahía de Paracas. Master’s Thesis, La Molina National Agrarian University, Lima, Peru, 2020. [Google Scholar]
  132. Veliz, K.E. Estudio Sobre Cryphiops caementarius (camarón) Como Bioindicador del Contenido de Metales Pesados del río Majes de la Provincia de Castilla. Bachelor’s Thesis, National University of San Agustín, Arequipa, Peru, 2017. [Google Scholar]
  133. Dominguez, C.T.; Pereda, M.N. Concentración de Cadmio y Plomo en Quelas y Hepatopáncreas de Cancer setosus y Platyxanthus orbignyi Procedentes de la Bahía de Huarmey, Ancash–2016. Bachelor’s Thesis, National University of Santa, Nuevo Chimbote, Peru, 2020. [Google Scholar]
  134. Barriga, M.; Aranda, D. Metales pesados (Pb, Cd y Hg) en moluscos bivalvos. Bol. Investig. Inst. Tecnol. Prod. Perú 2013, 11, 16–20. [Google Scholar]
  135. Rebaza, R.G. Evaluación de la Contaminación por Bioacumulación de Cd, Pb y Hg en Moluscos Bivalvos en la Zona de Amortiguamiento de la Bahía de Sechura Durante Agosto–Diciembre de 2015. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2016. [Google Scholar]
  136. Ortiz, N. Evaluación de Elementos Ecotóxicos en Sedimento, Agua y Cryphiops Caementarius (Camarón) en el Río Tambo. Bachelor’s Thesis, National University of San Agustín, Arequipa, Peru, 2018. [Google Scholar]
  137. Huaranga, F.; Mendez, E.; Vito, L.; Huaranga, F. Contaminación por metales pesados en la Cuenca del Río Moche, 1980–2010, La Libertad-Perú. Sci. Agropecu. 2012, 3, 235–247. [Google Scholar]
  138. Orellana, E.; Pérez, L.; Custodio, M.; Bulege, W.; Yallico-Madge, L.; Cuadrado, W. Cadmium, Lead and Zinc in the Soil-Plant-Alpaca System and Potential Health Risk Assessment Associated with the Intake of Alpaca Meat in Huancavelica, Peru. J. Ecol. Eng. 2021, 22, 40–52. [Google Scholar] [CrossRef]
  139. Diaz, L.M.; Peralta, L.S. Estudio Comparativo de la Capacidad de Acumulación para Cadmio y Plomo de Scirpus Californicus (Totora) y Stypa Ichu (Ichu) Bajo Condiciones Hidropónicas. Bachelor’s Thesis, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru, 2017; 128p. [Google Scholar]
  140. Chang Kee, J.; Gonzales, M.J.; Ponce, O.; Ramírez, L.; León, V.; Torres, A.; Corpus, M.; Loayza-Muro, R. Accumulation of heavy metals in native Andean plants: Potential tools for soil phytoremediation in Ancash (Peru). Environ. Sci. Pollut. Res. Int. 2018, 25, 33957–33966. [Google Scholar] [CrossRef] [PubMed]
  141. Cruzado-Tafur, E.; Bierla, K.; Torró, L.; Szpunar, J. Accumulation of As, Ag, Cd, Cu, Pb, and Zn by Native Plants Growing in Soils Contaminated by Mining Environmental Liabilities in the Peruvian Andes. Plants 2021, 10, 241. [Google Scholar] [CrossRef]
  142. Pérez, E.W. Acumulación de Metales Pesados en Plantas Nativas en los Relaves de los Pasivos Ambientales de la Mina Cercapuquio S.A., Chongos Alto, Chupaca. Master’s Thesis, National University of Central Peru, Huancayo, Peru, 2015. [Google Scholar]
  143. Huaranga, E.L. Evaluación de Contenidos Metálicos en las Especies Altoandinas Calamagrostis rigida, Trisetum spicatum y Senecio rufescens en el Entorno de la Laguna de Yanamate, Para Determinar su Potencial Fitorremediador–Pasco–2019. Bachelor’s Thesis, Daniel Alcides Carrión National University, Cerro de Pasco, Peru, 2019. [Google Scholar]
  144. Ricapa, J. Análisis de Absorción de Metales en la Planta Stypa Ichu en las Zonas no Disturbado y Disturbado del suelo de la Laguna Yanamate-Pasco. Bachelor’s Thesis, National University Daniel Alcides Carrión, Pasco, Peru, 2020. [Google Scholar]
  145. Acharte, L. Presencia de Cadmio y Plomo en Agua, Suelo y su Acumulación en Pastos Naturales de las Bocaminas San Antonio y Tangana de la Comunidad de Huachocolpa, Huancavelica-2018. Ph.D. Thesis, Universidad Nacional de Huancavelica, Huancavelica, Peru, 2020; 192p. [Google Scholar]
  146. Silvera, C.; Jamanca, N.; Garay, G. Determinación de plomo en suelos y cultivos forrajeros en el sector Supe-Barranca. QuantUNAB 2020, 1, 73–80. [Google Scholar]
  147. Paredes, G. Metales Pesados en Vacunos Alimentados con Pastos Cultivados Bajo Riego de la Cuenca del rio Ramís Azángaro, Puno. Master’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2019. [Google Scholar]
  148. Castillo, P.M. Fitoextracción del Mercurio y Fertilidad con Cultivos de Cobertura en Suelos Degradados por la Minería Aurífera Aluvial en Puerto Maldonado. Bachelor’s Thesis, Universidad Nacional Agraria La Molina, La Molina, Peru, 2022. [Google Scholar]
  149. Veliz, G. Uso del Suelo con Presencia de Metales Pesados y su Influencia en Forrajes del Pasivo Ambiental de la Minera Azulcocha. Master’s Thesis, Universidad Nacional del Centro del Peru, Huancayo, Peru, 2022. [Google Scholar]
  150. Arbaiza, A.K. Determinación de las Propiedades Mecánicas, Composición Química y Metales Pesados del Escobajo y Fibra de Palma Aceitera (Elaeis guineensis Jacq.), en el Distrito de Neshuya, Ucayali, Perú. M. Sc. Thesis, Universidad Nacional de Ucayali, Pucallpa, Peru, 2022. [Google Scholar]
  151. Ismail, A.; Riaz, M.; Akhtar, S.; Goodwill, J.E.; Sun, J. Heavy metals in milk: Global prevalence and health risk assessment. Toxin Rev. 2019, 38, 1–12. [Google Scholar] [CrossRef]
  152. Malhat, F.; Hagag, M.; Saber, A.; Fayz, A.E. Contamination of cows milk by heavy metal in Egypt. Bull. Environ. Contam. Toxicol. 2012, 88, 611–613. [Google Scholar] [CrossRef] [PubMed]
  153. Barcena, L.R. Determinación de Metales Tóxicos en Leche de Ganado Bovino en el Ámbito de la Microcuenca Lechera de Umachiri, Región Puno. Master’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2011. [Google Scholar]
  154. DelPeru. Departamentos Ganaderos del Peru. Available online: https://del-peru.org/departamentos-ganaderos-del-peru/ (accessed on 15 September 2023).
  155. Párraga, N.; Pizarro, A. Plomo en flora apícola y su transferencia a productos de la colmena en Tarma. National University of Center of Peru. 2017. Available online: http://hdl.handle.net/20.500.12894/4781 (accessed on 28 December 2023).
  156. González-Martín, M.I.; Revilla, I.; Betances-Salcedo, E.V.; Vivar-Quintana, A.M. Pesticide residues and heavy metals in commercially processed propolis. Microchem. J. 2018, 143, 423–429. [Google Scholar] [CrossRef]
  157. Delgado, A.A. Determinación de la Concentración de Mercurio en Huevos (clara y yema) de Gallina (Gallus gallus domesticus) Expendidos en Supermercados del Distrito de Villa el Salvador en Lima. Abril 2021. Bachelor’s Thesis, Hermilio Valdizán National University, Huanuco, Peru, 2021. [Google Scholar]
  158. Ríos, G.O. Concentración de Cadmio en Huevos de Gallina Comercial en tres Mercados en el Distrito de Trujillo, 2019. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  159. Santisteban, Ó.P. Comparación de los Niveles de Arsénico, Cadmio, Mercurio y Plomo en Piensos y Huevos de Codorniz (Coturnix coturnix japonica), Producidos en Empresas Formales e Informales y Comercializados en Mercados, Supermercados y Ambulatoriamente en la Región Lima, Mediante Espectrofotometría de Absorción Atómica y Espectrometría de Plasma Acoplado Inductivamente. Master’s Thesis, National University of San Marcos, Lima, Peru, 2021. [Google Scholar]
  160. Gonzáles, S.A. Determinación Cuantitativa de Plomo, Cadmio y Mercurio en Huevos de Gallina de Venta en Mercados Populares del Cono Norte de Lima–Perú. Master’s Thesis, National University of San Marcos, Lima, Peru, 2015. [Google Scholar]
  161. Aliu, H.; Dizman, S.; Sinani, A.; Hodolli, G. Comparative Study of Heavy Metal Concentration in Eggs Originating from Industrial Poultry Farms and Free-Range Hens in Kosovo. J. Food Qual. 2021, 2021, 6615289. [Google Scholar] [CrossRef]
  162. Kirov, P.M.; Karadjov, M.; Hristov, H.K.; Alexandrova, R. Comparative study of metal concentration determination in albumen of hen eggs originating from industrial poultry farms, backyard and free-range hens using ICP-OES technique. BioRisk 2023, 20, 129–138. [Google Scholar] [CrossRef]
  163. Protano, C.; Guidotti, M.; Owczarek, M.; Fantozzi, L.; Blasi, G.; Vitali, M. Polycyclic Aromatic Hydrocarbons and Metals in Transplanted Lichen (Pseudovernia furfuracea) at Sites Adjacent to a Solid-waste Landfill in Central Italy. Arch. Environ. Contam. Toxicol. 2014, 66, 471–481. [Google Scholar] [CrossRef]
  164. Bech, J.; Poschenrieder, C.; Llugany, M.; Barceló, J.; Tume, P.; Tobias, F.; Barranzuela, J.; Vásquez, E. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 1997, 203, 83–91. [Google Scholar] [CrossRef]
  165. Bech, J.; Duran, P.; Roca, M.; Poma, W.; Sánchez, I.; Barceló, J.; Boluda, R.; Roca-Pérez, L.; Poschenrieder, C. Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J. Geochem. Explor. 2012, 113, 106–111. [Google Scholar] [CrossRef]
  166. Ashe, K. Elevated Mercury Concentrations in Humans of Madre de Dios, Peru. PLoS ONE 2012, 7, e33305. [Google Scholar] [CrossRef] [PubMed]
  167. Alvarez, M.; Aliaga, E.; Yupanqui, E.; Palomino, E. A phytoremediation approach using Calamagrostis ligulata and Juncus imbricatus in Andean wetlands of Peru. Environ. Monit. Assess. 2012, 185, 323–334. [Google Scholar] [CrossRef]
  168. Loayza-Muro, R.A.; Duivenvoorden, J.F.; Kraak, M.H.S.; Admiraal, W. Metal leaching, acidity, and altitude confine benthic macroinvertebrate community composition in Andean streams. Environ. Toxicol Chem 2014, 33, 404–411. [Google Scholar] [CrossRef]
  169. Loaiza, I.; Hurtado, D.; Miglio, M.; Orrego, H.; Mendo, J. Tissue-specific Cd and Pb accumulation in Peruvian scallop (Argopecten purpuratus) transplanted to a suspended and bottom culture at Sechura Bay, Peru. Mar. Pollut. Bull. 2015, 91, 429–440. [Google Scholar] [CrossRef]
  170. Webb, J.; Coomes, O.T.; Mainville, N.; Mergler, D. Mercury Contamination in an Indicator Fish Species from Andean Amazonian Rivers Affected by Petroleum Extraction. Bull. Environ. Contam. Toxicol. 2015, 95, 279–285. [Google Scholar] [CrossRef] [PubMed]
  171. Moreno-Brush, M.; Portillo, A.; Brändel, S.D.; Storch, I.; Tschapka, M.; Biester, H. Mercury concentrations in bats (Chiroptera) from a gold mining area in the Peruvian Amazon. Ecotoxicology 2018, 27, 45–54. [Google Scholar] [CrossRef]
  172. Adkesson, M.J.; Levengood, J.M.; Scott, J.W.; Schaeffer, D.J.; Langan, J.N.; Cárdenas-Alayza, S.; De la Puente, S.; Majluf, P.; Yi, S. Assessment of polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in the blood of Humboldt penguins (Spheniscus Humboldti) from the punta San Juan marine protected area, Peru. J. Wildl. Dis. 2018, 54, 304–314. [Google Scholar] [CrossRef]
  173. Kumar, A.; Divoll, T.J.; Ganguli, P.M.; Trama, F.A.; Lamborg, C.H. Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera). Environ. Pollut. 2018, 236, 862–870. [Google Scholar] [CrossRef]
  174. Martinez, G.; McCord, S.A.; Driscoll, C.T.; Todorova, S.; Wu, S.; Araújo, J.F.; Vega, C.M.; Fernandez, L.E. Mercury Contamination in Riverine Sediments and Fish Associated with Artisanal and Small-Scale Gold Mining in Madre de Dios, Peru. Int. J. Environ. Res. Public Health 2018, 15, 1584. [Google Scholar] [CrossRef]
  175. Loaiza, I.; De Troch, M.; De Boeck, G. Potential health risks via consumption of six edible shellfish species collected from Piura-Peru. Ecotoxicol. Environ. Saf. 2018, 159, 249–260. [Google Scholar] [CrossRef]
  176. Custodio, M.; Zapata, F.; Cruz, D.; Bulege, W. Potentially toxic metals in lotic systems with aptitude for aquaculture at the watershed Mantaro River, Peru. Ambiente E Agua-Interdiscip. J. Appl. Sci. 2019, 14, e2261. [Google Scholar] [CrossRef]
  177. Quispe-Zuñiga, M.R.; Santos, F.; Callo-Concha, D.; Greve, K. Impact of Heavy Metals on Community Farming Activities in the Central Peruvian Andes. Minerals 2019, 9, 647. [Google Scholar] [CrossRef]
  178. Oliva, M.; Camas, D.; Valqui, J.; Meléndez Mori, J.; Leiva, S. Quantitative Determination of Cadmium (Cd) in Soil-Plant System in Potato Cropping (Solanum tuberosum var. Huayro). Adv. Agric. 2019, 4, 9862543. [Google Scholar] [CrossRef]
  179. Davila, C.; Reyes-Evangelista, L.; Aldoradin, E.; Londone, P.; Alemán, J. Cd and Pb reduction in cocoa (Theobroma cacao) nib using two organic amendments. Rev. Colomb. Investig. Agroind. 2019, 7, 20–29. [Google Scholar] [CrossRef]
  180. Berky, A.J.; Ryde, I.T.; Feingold, B.; Ortiz, E.J.; Wyatt, L.H.; Weinhouse, C.; Hsu-Kim, H.; Meyer, J.N.; Pan, W.K. Predictors of mitochondrial DNA copy number and damage in a mercury-exposed rural Peruvian population near artisanal and small-scale gold mining: An exploratory study. Environ. Mol. Mutagénesis 2019, 60, 197–210. [Google Scholar] [CrossRef]
  181. Markham, K.; Sangermano, F. Evaluating Wildlife Vulnerability to Mercury Pollution From Artisanal and Small-Scale Gold Mining in Madre de Dios, Peru. Trop. Conserv. Sci. 2020, 11, 1–12. [Google Scholar] [CrossRef]
  182. Bedriñana, J.; Peinado, D.; Peñaloza-Fernandez, R. Lead Bioaccumulation in Root and Aerial Part of Natural and Cultivated Pastures in Highly Contaminated Soils in Central Andes of Peru. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 126–132. [Google Scholar] [CrossRef]
  183. Vilca, Z.; Luque, F.; Vilca, O.; Ferraz, R.; Tornisielo, L. Uptake and depletion of the antibiotic sulfadiazine 14C in rainbow trout (Oncorhynchus mykiss). J. Radioanal. Nucl. Chem. 2020, 323, 1033–1039. [Google Scholar] [CrossRef]
  184. Perez-Venegas, D.J.; Toro-Valdivieso, C.; Ayala, F.; Brito, B.; Iturra, L.; Arriagada, M.; Seguel, M.; Barrios, C.; Sepúlveda, M.; Oliva, D.; et al. Monitoring the occurrence of microplastic ingestion in Otariids along the Peruvian and Chilean coasts. Mar. Pollut. Bull. 2020, 153, 110966. [Google Scholar] [CrossRef]
  185. Peñafiel-Sandoval, Z.; Lannacone, J. Effect of urea on lead absorption in corn (Zea mays L), spinach (Spinacia olerácea L.) and cabbage (Brassica olerácea L.). Agron. Colomb. 2020, 38, 205–217. [Google Scholar] [CrossRef]
  186. Scaccabarozzi, D.; Castillo, L.; Aromatisi, A.; Milne, L.; Búllon Castillo, A.; Muñoz-Rojas, M. Soil, Site, and Management Factors Affecting Cadmium Concentrations in Cacao-Growing Soils. Agronomy 2020, 10, 806. [Google Scholar] [CrossRef]
  187. Carrasco-Rueda, F.; Loiselle, B.A.; Frederick, P.C. Mercury bioaccumulation in tropical bats from a region of active artisanal and small-scale gold mining. Ecotoxicology 2020, 29, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
  188. Oliva, M.; Rubio, K.; Epquin, M.; Marlo, G.; Leiva, S. Cadmium Uptake in Native Cacao Trees in Agricultural Lands of Bagua, Peru. Agronomy 2020, 10, 1551. [Google Scholar] [CrossRef]
  189. Reuben, A.; Frischtak, H.; Berky, A.; Ortiz, E.J.; Morales, A.M.; Hsu-Kim, H.; Pendergast, L.L.; Pan, W.K. Elevated Hair Mercury Levels Are Associated with Neurodevelopmental Deficits in Children Living Near Artisanal and Small-Scale Gold Mining in Peru. GeoHealth 2020, 4, e2019GH000222. [Google Scholar] [CrossRef] [PubMed]
  190. Custodio, M.; Álvarez, D.; Cuadrado, W.; Montalvo, R.; Ochoa, S. Potentially toxic metals and metalloids in surface water intended for human consumption and other uses in the Mantaro River watershed, Peru. Soil Water Res. 2020, 15, 237–245. [Google Scholar] [CrossRef]
  191. Garcia-Chevesich, P.; García, V.; Martínez, G.; Zea, J.; Ticona, J.; Alejo, F.; Vanneste, J.; Acker, S.; Vanzin, G.; Malone, A.; et al. Inexpensive Organic Materials and Their Applications towards Heavy Metal Attenuation in Waters from Southern Peru. Water 2020, 12, 2948. [Google Scholar] [CrossRef]
  192. Zapana, J.S.P.; Arán, D.S.; Bocardo, E.F.; Harguinteguy, C.A. Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru. Int. J. Environ. Sci. Technol. 2020, 17, 4419–4430. [Google Scholar] [CrossRef]
  193. Castro-Bedriñana, J.; Chirinos-Peinado, D.; Garcia-Olarte, E.; Quispe-Ramos, R. Lead transfer in the soil-root-plant system in a highly contaminated Andean area. PeerJ 2021, 9, e10624. [Google Scholar] [CrossRef]
  194. Boleji, L.; Custodio, M.; Zapata, F.; Campó, W.; Peñaloza, R. Bioconcentration and bioaccumulation of toxic metals in Scirpus californicus from natural wetlands in the Central Andes of Peru. Ambiente E Agua-Interdiscip. J. Appl. Sci. 2021, 16, 1. [Google Scholar] [CrossRef]
  195. Choque-Quispe, D.; Froehner, S.; Ligarda-Samanez, C.A.; Ramos-Pacheco, B.S.; Peralta-Guevara, D.E.; Palomino-Rincón, H.; Choque-Quispe, Y.; Solano-Reynoso, A.M.; Barboza-Palomino, G.I.; Taipe-Pardo, F.; et al. Insights from Water Quality of High Andean Springs for Human Consumption in Peru. Water 2021, 13, 2650. [Google Scholar] [CrossRef]
  196. Custodio, M.; Peñaloza, R.; Ochoa, S.; Cuadrado, W. Human risk associated with the ingestion of artichokes grown in soils irrigated with water contaminated by potentially toxic elements, Junin, Peru. Saudi J. Biol. Sci. 2021, 28, 5952–5962. [Google Scholar] [CrossRef] [PubMed]
  197. Canham, R.; González-Prieto, A.M.; Elliott, J.E. Mercury Exposure and Toxicological Consequences in Fish and Fish-Eating Wildlife from Anthropogenic Activity in Latin America. Integr. Environ. Assess. Manag. 2021, 17, 13–26. [Google Scholar] [CrossRef] [PubMed]
  198. Le Croizier, G.; Point, D.; Renedo, M.; Munaron, J.M.; Espinoza, P.; Amezcua-Martinez, F.; Lanco Bertrand, S.; Lorrain, A. Mercury concentrations, biomagnification and isotopic discrimination factors in two seabird species from the Humboldt Current ecosystem. Mar. Pollut. Bull. 2022, 177, 113481. [Google Scholar] [CrossRef] [PubMed]
  199. Cordero-Maldonado, C.; Espinoza, P. Cadmium and lead levels in muscle tissue of blue shark (Prionace glauca) in the Southeastern Pacific Waters. Mar. Pollut. Bull. 2022, 177, 113523. [Google Scholar] [CrossRef]
  200. Escobar, G. Bioacumulación de Cadmio y Plomo en Arundo donax L., Cyperus alternifolius y Leonotis nepetifolia en Sedimentos Aluviales en Samne, La Libertad–Perú. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  201. Hernández, M. Bioacumulación de Cadmio en Rye grass (Lolium perenne L. var. Nui) Sembrado en tres Sustratos en Condiciones de Invernadero. Master’s Thesis, National University Agrariam La Molina, Lima, Peru, 2016. [Google Scholar]
  202. Marin, L. Comparación de la Concentración de dos Metales Pesados Cadmio y Plomo en Orégano (Oreganum vulgare) y Aceituna (Olea europaea) Cosechados en Pampa Sitana y La Yarada de la Región Tacna. Ph.D. Thesis, Jorge Basadre Grohmann National University, Tacna, Peru, 2019. [Google Scholar]
  203. Santander, W.; Mendieta, T. Cuantificación de los Límites Máximos Permisibles de Cadmio en Suelos, Frutos (Cáscara, Almendra Fresca), Granos Fermentados, Licor de Cacao y Chocolate, para Garantizar una Exportación de Calidad en Zonas Productoras de las Provincias de Huallaga y Bellavista en la Región San Martín; Investigation report; National University of San Martín: Tarapoto, Peru, 2019. [Google Scholar]
  204. Zárate-Quiñones, R.; Custodio, M.; Orellana-Mendoza, E.; Cuadrado-Campó, W.; Grijalva-Aroni, P.; Peñaloza, R. Determination of toxic metals in commonly consumed medicinal plants largely used in Peru by ICP-MS and their impact on human health. Rev. Chem. Data Collect. 2021, 33, 100711. [Google Scholar] [CrossRef]
  205. Madueño, F. Determinación de Metales Pesados (Plomo y Cadmio) en Lechuga (Lactuca sativa) en Mercados del Cono Norte, Centro y Cono Sur de Lima Metropolitana. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2017. [Google Scholar]
  206. Lovera, S. Estudio de la Concentración y Absorción de Macroelementos y Metales Pesados en el Cultivo de Algodón Irrigado con Aguas Servidas en el Sector de San Pedro Cachiche–Ica. Bachelor’s Thesis, National University San Luis Gonzaga, Ica, Peru, 2019. [Google Scholar]
  207. Sánchez, M. Evaluación del Contenido de Metales Pesados (Cd y Pb) en Diferentes Edades y Etapas Fenológicas del Cultivo de Cacao en dos Zonas del Alto Huallaga. Bachelor’s Thesis, National Agrarian University of the Jungle, Huanuco, Peru, 2017. [Google Scholar]
  208. Villanueva, P. Relación Entre las Características del Suelo y la Concentración de Cadmio en los Tejidos de la Planta de Cacao (theobroma cacao l.) en Pumahuasi, Huánuco. Bachelor’s Thesis, Hermilio Valdizán National University, Huanuco-Peru, 2019. [Google Scholar]
  209. Gómez, N. Absorción de Metales en la Planta Senecio Collinus en Suelos Disturbados y no Disturbados en la Zona de la Laguna Yanamate, con la Finalidad de Realizar una Remediación Ambiental. Bachelor’s Thesis, Daniel Alcides Carrión National University, Cerro de Pasco, Peru, 2019. [Google Scholar]
  210. Tapia, A. Análisis de Absorción de Metales en la Planta Hydrocotyle Vulgaris en Crecimiento en Agua Natural y Residual en la Zona de Carhuamayo–2019. Bachelor’s Thesis, Daniel Alcides Carrión National University, Cerro de Pasco, Peru, 2020. [Google Scholar]
  211. Chuquitoma, E. Efecto de la Concentración de Relave Minero en la Germinación de Semillas, Crecimiento y Respuesta Fisiológica de Plantas de Lupinus Mutabilis (Lupino), y su Relación con la Bioacumulación de Metales Pesados. Master’s Thesis, National University of San Agustin, Arequipa, Peru, 2022. [Google Scholar]
  212. Calla, Y. Evaluación de la Concentración de Cadmio en el Suelo y su Relación con los Órganos Vegetales de Cacao (Theobroma cacao L.) en San Gabán, Carabaya, Puno. Bachelor’s Thesis, National University of Juliaca, Puno, Peru, 2021. [Google Scholar]
  213. Bernabe, Y. Capacidad de Absorción de Plomo en la Totora (Scirpus californicus), en Crecimiento en las Aguas en la Zona del Delta Upamayo-Lago Chinchaycocha–2019. Bachelor’s Thesis, Daniel Alcides Carrión National University, Cerro de Pasco, Peru, 2020. [Google Scholar]
  214. García, L. Capacidad Remediadora y Bioacumuladora de los Órganos de Helianthus annuus L. “Girasol” Cuando Son Sometidas a Diferentes Concentraciones de Plomo. Master’s Thesis, National University of Trujillo, Trujillo, Peru, 2009. [Google Scholar]
  215. Meléndez, J. Transporte y Acumulación de Cadmio (Cd) en Cinco Genotipos de Cacao Nativo de la Región Amazonas. Bachelor’s Thesis, Toribio Rodríguez of Mendoza of Amazonas National University, Chachapoyas, Peru, 2021. [Google Scholar]
  216. Ríos, D. Diagnóstico de Cadmio y Plomo en Hojas de los Árboles de Dipteryx Odorata (Aublet). Wiiid. (Shihuahuaco) con Fines de Uso Como Especie Sumidero de Metales Pesados. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2016. [Google Scholar]
  217. López, J.; Cartagena, T.; Vásquez, R. Niveles de Concentración de Cadmio (Cd) y Plomo (Pb) en el Suelo, Hojas y Almendras de Ocho Clones de CACAO (Theobroma cacao L.) en el jardín Interclonal de la Universidad Nacional de Ucayali. National University of Ucayali. 2016. Available online: http://repositorio.unu.edu.pe/handle/UNU/3928 (accessed on 28 December 2023).
  218. Cartagena Cachique, T.G. Determinación de Niveles de Concentración de Cadmio (Cd) y Plomo (Pb) en el Suelo, Hojas y Almendras de Ocho Clones de Cacao (Theobroma cacao L.) en el Jardín Interclonal de la Universidad Nacional de Ucayali. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2018. [Google Scholar]
  219. Ramirez, D. Determinación de Niveles de Concentración de Cadmio (Cd) en Hojas de cacao (Theobroma cacao L.) Cultivado Bajo Tres Sistemas de Manejo en San Alejandro-Distrito de Irazola-Provincia de Padre Abad-Departamento de Ucayali. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2018. [Google Scholar]
  220. Apaclla, E.; Pezo, A. Evaluación de Metales en Corteza de Maytenus Macrocarpa (Chuchuhuasi) de uso Etnomedicinal en la Región Loreto. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2015. [Google Scholar]
  221. Panduro, J.; Soria, B. Metales Pesados en Hojas de Myrciaria Dubia (kunth) mc. vaugh. “Camu camu” y Cajanus cajan (l) huth. “Puspo Poroto”, Que se Expenden en el Centro Herbolario “Pasaje Paquito” de la Ciudad de Iquitos. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2015. [Google Scholar]
  222. García, T.; Uribe, R. Evaluación de Metales de la Especie Tynanthus Panurensis (Clavo huasca), de uso Etnoterapéutico en la Región Loreto. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2015. [Google Scholar]
  223. Chambergo, A. Iones Ferrato en la Producción y Concentración de Metales Pesados en Lechuga (Lactuca sativa L.) en La Molina. Bachelor’s Thesis, National University Agrariam La Molina Lima, La Molina, Peru, 2020. [Google Scholar]
  224. Castillo, E.; Ibañez, L. Cuantificación de Metales Pesados (Pb, As, Cd, Hg) en las Hojas de Tessaria Integrifolia Procedente del Distrito de Moche-Trujillo-La Libertad. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2017. [Google Scholar]
  225. Paredes, Y.; Siccha, D. Concentración de plomo en vegetales de consumo humano que se expenden en la ciudad de Huamachuco. National University of Trujillo: Trujillo, Peru, 2020. [Google Scholar]
  226. Ostolaza, J. Silicato de Magnesio en la Concentración de Plomo y Cadmio en el maíz (Zea mays) en Condiciones de Invernadero. Master’s Thesis, National University Agrariam La Molina Lima, La Molina, Peru, 2020. [Google Scholar]
  227. Cusi, B. Niveles de Cadmio en el Cultivo de Theobroma Cacao, en la Cuenca del Río Ene, Río Tambo–Satipo. Bachelor’s Thesis, National University of Central Peru, Huancayo, Peru, 2022. [Google Scholar]
  228. Aguirre, K. Estudio del Contenido del Cadmio (cd) en el Cultivo de Cacao. Bachelor’s Thesis, National University of Piura, Piura, Peru, 2020. [Google Scholar]
  229. Cárdenas, A. Presencia del Cadmio en Algunas Parcelas de Cacao orgánico en la Cooperativa Agraria Industrial Naranjillo-Tingo María–Perú. Bachelor’s Thesis, National Agrarian University of the Jungle, Tingo Maria, Peru, 2012. [Google Scholar]
  230. Tantalean, E. Distribución del Contenido de Cadmio en los Diferentes órganos del Cacao CCN-51 en Suelo Aluvial y Residual. Bachelor’s Thesis, National Agrarian University of the Jungle, Tingo Maria, Peru, 2017. [Google Scholar]
  231. Palacin, J. Biochar como Inmovilizador del Cadmio en Suelo y su Efecto en el Grano del Cultivo de Cacao (Theobroma Cacao L.) en la Localidad de Pumahuasi–Huánuco. Bachelor’s Thesis, Hermilio Valdizán National University, Huanuco, Peru, 2020. [Google Scholar]
  232. Contreras, C. Relación del Contenido Cd, Pb y Hg en Suelos Agroforestales de Nina Rumi y su Bioacumulación en Tejidos de Inga Edulis (Guaba)-Loreto 2020. Ph.D. Thesis, National University of the Amazonía Peruana, Loreto, Peru, 2022. [Google Scholar]
  233. Reyes, E. Grado de Resistencia al Aluminio y Plomo de dos Variedades de Phaseolus Vulgaris L. “Canario” y “Panamito”. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2013. [Google Scholar]
  234. Ñahui, A. Estudio de Acumulación del Plomo, Cadmio y Cromo en Vegetales Autóctonas en Lodos Ribereños del Río Opamayo Lircay-Angaraes-Huancavelica. Master’s Thesis, National University of Huancavelica, Huancavelica, Peru, 2021. [Google Scholar]
  235. Tuesta, F. Bioacumulación del Cadmio (Cd) en Plantaciones de Cacao (Theobroma cacao L.) Asociadas a la Cooperativa APROCAM en la Región Amazonas. Bachelor’s Thesis, National UniversityToribio Rodríguez de Mendoza de Amazonas, Amazonas, Peru, 2022. [Google Scholar]
  236. Moreno, M. Acumulación de Plomo en Lactuca Sativa Expuesta a Diferentes Tiempos y Concentraciones de Acetato de Plomo, en Condiciones de Laboratorio. Bachelor’s Thesis, National University of Peru, Trujillo, Peru, 2013. [Google Scholar]
  237. Rosales, B. Concentración de Metales Pesados y la Influencia del pH en Suelos de Matahuasi y El Mantaro (Junín) en Cucurbita pepo. Master’s Thesis, National University of Center of Peru, Junín, Peru, 2020. [Google Scholar]
  238. Zurita, K. Efecto de la Aplicación de Enmiendas y Plan de Fertilización, en la Disminución de la Absorción de Cadmio, en el Cultivo de Cacao (Theobroma cacao L.) cultivar blanco en Lalaquiz-Huancabamba-Piura 2020. Bachelor’s Thesis, National University of Piura, Piura, Peru, 2022. [Google Scholar]
  239. Flores, S. Efecto de la Fertilización y Enmiendas Orgánicas en la Disminución de Absorción de Cadmio en Cultivo de Cacao (Theobroma cacao L.), Sector Palo Blanco-Chulucanas-Morropón-Piura-Perú 2022. Bachelor’s Thesis, National University of Piura, Piura, Peru, 2022. [Google Scholar]
  240. Grandez, J. Evaluación de Metales Pesados en Hortalizas de dos Procedencias Comercializadas en el Mercado Modelo de Chachapoyas 2020. Bachelor’s Thesis, National University Toribio Rodríguez de Mendoza, Amazonas, Peru, 2021. [Google Scholar]
  241. Bolivar, R. Tres Especies de Plantas Bioacumuladoras de Plomo en Asociación con el Cultivo de Cebolla en Suelos AgríColas contaminados con Aguas del Rio Chili en Tiabaya, Arequipa. Bachelor’s Thesis, National University of San Agustin, Arequipa, Peru, 2014. [Google Scholar]
  242. Quispe, N.; Carling, G.; Zanabria, D.; Chavez, E.; Cuadros, F.; Paredes, B. Health risk assessment of heavy metals (Hg, Pb, Cd, Cr and As) via consumption of vegetables cultured in agricultural sites in Arequipa. Chem. Data Collect. 2021, 33, 100723. [Google Scholar] [CrossRef]
  243. Pereyra, J. Bioacumulación y Translocación de Plomo en Plántulas In Vitro de piña (Ananas comosus (L.) Merrill), en Función de su Concentración en el Medio de Cultivo. Bachelor’s Thesis, National University of Cajamarca, Cajamarca, Peru, 2019. [Google Scholar]
  244. Blaz, M. Efecto del Plomo en el Crecimiento de Plántulas de Acacia Macracantha H. & B. ex Will. “Espino” en Condiciones de Laboratorio. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2015. [Google Scholar]
  245. Tello, F. Determinación de ArséNico en Tubérculos de Solanum Tuberosum “Papa Blanca” Provenientes del Mercado Mayorista Nery García Zárate. Bachelor’s Thesis, National University San Cristóbal de Huamanga, Ayacucho, Peru, 2011. [Google Scholar]
  246. Gómez, E. Bioacumulación y Transferencia de Cadmio de los Pastos a la Leche de Vacas en la Granja Comunal de Paccha-La Oroya. Bachelor’s Thesis, National University of the Center of Peru, Junin, Peru, 2019. [Google Scholar]
  247. Huacho, A. Bioacumulación y Transferencia de Cadmio del Suelo a los Pastos y Leche Bovina en la Estación Experimental El Mantaro. Bachelor’s Thesis, National University of the Center of Peru, Junin, Peru, 2022. [Google Scholar]
  248. García, E. Evaluación BromatóLogica del Olluco Silvestre (Ullucus tuberosus subsp. Aborigineus) Procedente del Distrito de Ticrapo para su uso Agroindustrial. Bachelor’s Thesis, National University of Huancavelica, Huancavelica, Peru, 2021. [Google Scholar]
  249. Balbín, N.; Estacio, A. Determinación de las Concentraciones de Plomo y Cadmio en papas (Solanum tuberosum) Cultivadas en los Terrenos Ribereños del Río Santa–Ancash. Bachelor’s Thesis, National University Mayor de San Marcos, Lima, Peru, 2013. [Google Scholar]
  250. Carrera, N.; Abanto, S. Niveles de Acumulación de Plomo por las Raíces y tallo de Cortaderia Rudiuscula Stapf “Cortadera”, en Condiciones de Laboratorio. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2018. [Google Scholar]
  251. Altamirano, C.; Beltrán, K. Nivel de Absorción de la raíz de Cortaderia Rudiuscula Stapf. “Cortadera” al Plomo y Hierro, en Condiciones de Laboratorio. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2017. [Google Scholar]
  252. Callo, Y. Bioacumulación de Metales Pesados: Plomo, Cadmio y Cromo en Plantas Medicinales Recolectadas en Zonas Cercanas a alto Tráfico Vehicular en la Ciudad del Cusco. Bachelor’s Thesis, National University of Altiplano, Cusco, Peru, 2022. [Google Scholar]
  253. Dionisio, E. Impacto de Productos Biodegradables Aplicados al Suelo Sobre la Acumulación de Cadmio en Cacao (Theobroma cacao L.). Bachelor’s Thesis, National University Agraria La Molina, Lima, Peru, 2020. [Google Scholar]
  254. Caso, J. Determinación de Concentraciones de Plomo en maíz (Zea mays) Procedente de la Cuenca del río San Juan Chincha. Bachelor’s Thesis, National University Mayor de San Marcos, Ica, Peru, 2020. [Google Scholar]
  255. Aróstegui, V. Determinación de los Niveles de Concentración de Mercurio en Suelos y Plátanos Musa Cultivar AAB, sub Grupo Plantin, en Sarayacu, Punkiri Chico e Iberia-Madre de Dios. Bachelor’s Thesis, National University Amazónica de Madre de Dios, Madre de Dios, Peru, 2017. [Google Scholar]
  256. Huamán, A. Concentración de Plomo en la miel de Apis Mellifera e Inflorescencias de Eucalyptus Globulus en seis Zonas del Valle del Mantaro. Bachelor’s Thesis, National University of the Center of Peru, Junín, Peru, 2013. [Google Scholar]
  257. Ocaña, J.; Tadeo, M. Evaluación Farmacognóstica y Cuantificación de Fenoles Totales del fruto de Bunchosia armeniaca (Cav.) DC Ciruela cansa Boca. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  258. Buendía, B. Evaluación de la Concentración de Metales Pesados en Frutos de Passiflora Ligularis por uso Intensivo de Agroquímicos Oxapampa. Ph.D. Thesis, National University of the Center of Peru, Pasco, Peru, 2018. [Google Scholar]
  259. Escobar, M. Impacto de la Contaminación de las aguas de las Cuencas de Junín en los Cultivos de Consumo Humano. Master’s thesis, National University Hermilio Valdizán, Junín, Peru, 2019. [Google Scholar]
  260. Castillo, J.; Dominguez, J. Determinación de los Niveles de Plomo y Arsénico en Zapallo Macre (Cucurbita máxima Duchesne) y Tomate (Solanum lycopersicum var. Saladette) y Evaluación del Riesgo Toxicológico en la Salud de la Población de Lima Metropolitana. Ph.D. Thesis, National University Mayor de San Marcos, Lima, Peru, 2021. [Google Scholar]
  261. Soto, B. Determinación de Cadmio y Plomo en los Frutos de Rocoto (Capsicum pubescens) con Manejo Convencional del Cultivo en el Distrito de Oxapampa. Bachelor’s Thesis, National University Daniel Alcides Carrión, Pasco, Peru, 2022. [Google Scholar]
  262. Villanueva, M. Ocratoxina A, cadmio, Cromo y plomo en Vaccinium corymbosum L.“arándano” Expendidos en un Mercado y Supermercado de Chorrillos, Lima 2020. Master’s Thesis, National University Mayor de San Marcos, Lima, Peru, 2022. [Google Scholar]
  263. Basualdo Larrazabal, G.J.; Yacila Frías, J.D. Determinación de Arsénico y Cadmio en Aguas del río Rímac y Habas Cultivadas en el Distrito de San Mateo de Huánchor de la Región de Lima. Bachelor’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2015. [Google Scholar]
  264. Huashuayo Donayre, J.R. Determinación de Cadmio y Plomo en Granos de Cacao (Theobroma cacao L.) Procedente de Tres Sectores del Distrito de Ayna–Ayacucho–2021. Bachelor’s Thesis, Universidad Nacional Mayor de San Marcos, Ayacucho, Peru, 2021. [Google Scholar]
  265. Fonseca Melgarejo, J.A. Metales Pesados (Cd++, Pb++) en Granos de Cacao (Theobroma Cacao) y la Fitoextracción de Cultivos en Callejones, valle del Alto Huallaga–Perú. Master’s Thesis, Universidad Nacional Hermilio Valdizán, San Martín, Peru, 2021. [Google Scholar]
  266. Lino Palpa, F.F. Determinación de la Concentración de Metales en la Almendra de Cacao en la Cooperativa Agropecuaria Bella en la Provincia de Leoncio Prado-Huánuco y Posibles Consecuencias de Riesgos a la Salud. Bachelor’s Thesis, Universidad Nacional Daniel Alcides Carrión, Pasco, Peru, 2019. [Google Scholar]
  267. Pintado Castillo, M.D.M.; Mego Ramírez, R. Determinación del Nivel de Concentración de Cadmio en Granos y Esencia de café (Coffea arabica L.), en el Distrito de Chirinos, Provincia de San Ignacio. Bachelor’s Thesis, Universidad Nacional de Juliaca, Cajamarca, Peru, 2019. [Google Scholar]
  268. Venturo Minauro, G.K. Determinación del Contenido de Cadmio en Almendras Frescas de Tres Variedades de Cacao (Theobroma cacao L.) y del Suelo y su Relación con el pH y la Conductividad Eléctrica en las Zonas de Juanjuí y Pucacaca. Bachelor’s Thesis, Universidad Nacional de San Martín, San Martín, Peru, 2019. [Google Scholar]
  269. Julca Gonzales, K. Determinación de Cadmio en Almendras de Cacao Forastero (Theobroma cacao L.) en Plantaciones de Tres Edades Diferentes en Balsahuayco, Distrito de Jaén. Bachelor’s Thesis, Universidad Nacional de Jaén, Cajamarca, Peru, 2019. [Google Scholar]
  270. López Bazán, L.M.; Incio Cieza, M.T. Evaluación de la Concentración de Cadmio en las Diferentes Etapas de Poscosecha de Cacao Criollo Orgánico (Theobroma cacao L.) Procedentes de la Asociación de Productores Cacaoteros de Distrito de Huarango, Provincia de San Ignacio. Bachelor’s Thesis, Universidad Nacional de Jaén, Cajamarca, Peru, 2021. [Google Scholar]
  271. Mera Silva, K.P. Determinación del Contenido de Plomo en las Almendras de Cacao del Clon CCN-51 y la Variedad Hibrida de las Provincias de Padre Abad y Coronel Portillo en la Región Ucayali. Bachelor’s Thesis, Universidad Nacional de Ucayali, Ucayali, Peru, 2017. [Google Scholar]
  272. Lopez Ucariegue, J.A.; Hoyos Cardozo, J. Determinación del Contenido de Cadmio (Cd) en Almendras de Cacao (Theobroma cacao L.) Cultivado Bajo Tres Sistemas de Manejo en San Alejandro-Región Ucayali; Universidad Nacional de Ucayali PR: Ucayali, Peru, 2018. [Google Scholar]
  273. Alcala Palacios, J.N. Determinación del Contenido de Cadmio en los Granos de Theobroma cacao L. Producidos por la Asociación de Productores de Santa Rosa de Chiriari–Satipo. Bachelor’s Thesis, Universidad Nacional del Centro del Perú, Junín, Peru, 2021. [Google Scholar]
  274. Del Aguila Melendez, E.A. Determinación de Cadmio y Plomo en Granos de Cacao, Frescos, Secos y en Licor de Cacao (Theobroma cacao). Bachelor’s Thesis, Universidad Nacional Agraria de la Selva, Huánuco, Peru, 2017. [Google Scholar]
  275. Tolentino Sntillán, M.A. Huella de Macroelementos, Microelementos, Plomo y Cadmio, Compuestos Bioactivos y Capacidad Antioxidante en Grano Fresco, Seco y Pasta de Cacao. Bachelor’s Thesis, Universidad Nacional Agraria de la Selva, Huánuco, Peru, 2018. [Google Scholar]
  276. Llactas Flores, M. Influencia de la Dosis de Aplicación de Dolomita en la Concentración de Cadmio en las Almendras de Cacao en Parcelas de la COOPAIN. Bachelor’s Thesis, Universidad Nacional Agraria de la Selva, Huánuco, Peru, 2016. [Google Scholar]
  277. Chávez, J.J. Efecto de Fuentes y Tres Niveles de Materia Orgánica, en la Reducción de la Absorción de Cadmio en Almendras de Cacao en Leoncio Prado, HuáNuco. Master’s Thesis, National Agrarian University of the Selva, Tingo María, Peru, 2020. [Google Scholar]
  278. Falcón, G. Cadmio y Polifenoles Totales en la Fermentación de los Granos de Cacao (Theobroma cacao L.) Clon CCN-51. Master’s Thesis, National Agrarian University of the Selva, Tingo María, Peru, 2019. [Google Scholar]
  279. Marín, M. Influencia del Método de Limpieza con Fertilización Orgánica e Inorgánica en la Remediación del Contenido de Cadmio en el Suelo y Granos de Cacao (Theobroma cacao L.) en Ucayali, Perú. Master’s Thesis, National University of Ucayali, Pucallpa, Peru, 2022. [Google Scholar]
  280. Huaquipaco, S. Determinación de la Concentración de Cadmio y Mercurio en cañihua (Chenopodium Pallidicaule Aellen) Obtenida en los Distritos de Taraco y Coata del Departamento de Puno–2022. Master’s Thesis, National University of the Altiplano, Puno, Peru, 2022. [Google Scholar]
  281. Mundaca, Y.M.; Huamán, J.S. Evaluación de Cadmio en Granos de Café, Café Tostado Molido y Esencia de Café (Coffea arabica L.) Procedentes de Fincas Manejadas Convencionalmente, en el Distrito San Ignacio, Cajamarca, Campaña 2020. Bachelor’s Thesis, National University of Jaén, Jaén, Peru, 2021. [Google Scholar]
  282. Tuesta, K.A. Efecto de Tres Sistemas de Manejo Sobre el Contenido de Cadmio (Cd) en la Hojarasca y en la Cáscara de Cacao (Theobroma cacao L.) en San Alejandro Ucayali, Perú. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2019. [Google Scholar]
  283. Sosa, F.E. Evaluación de Metales Pesados en Recursos Terapéuticos Vegetales de la Ciudad de Iquitos, Loreto. Ph.D. Thesis, National University of Trujillo, Trujillo, Peru, 2016. [Google Scholar]
  284. Anticona, T.Y.; Arteaga, T.O. Niveles de Acumulación de Cadmio y Plomo por el Tallo de Cortaderia Rudiuscula Stapf “Cortadera”. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2018. [Google Scholar]
  285. Parillo, I. Determinación de ParáMetros y Contenido de Plomo en Insuflados por Explosión de Diferentes Variedades de Quinua (Chenopodium Quinoa Willd). Master’s Thesis, National University of Juliaca, Puno, Peru, 2021. [Google Scholar]
  286. Romero, W. Determinación del Contenido de Cd y Pb en los Principales Chocolates en Barra de la Región Ucayali, Pucallpa–Ucayali. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2021. [Google Scholar]
  287. Solano, N.M. Evaluación de Ocratoxina A, Plomo, Mercurio e Identificación de Hongos Micotoxigénicos en la Harina de Maca (Lepidium meyenii Walp.). Master’s Thesis, National University of San Marcos, Lima, Peru, 2022. [Google Scholar]
  288. Revilla, W.H. Determinación de Metales Pesados en Muestras de Inflorescencia y Aceite de Especie Vegetal del Género Cannabis por ICP-MS, y las Implicancias ToxicolóGicas en Potenciales Consumidores Arequipa 2021. Master’s Thesis, National University of San Agustín, Arequipa, Peru, 2021. [Google Scholar]
  289. Terrazos, S.A. Determinación de la Concentración de Plomo y Cadmio en Bebidas de Jugo de Naranja Comercializadas de Forma Ambulatoria en Ate Vitarte–Lima y Evaluación de su Riesgo Toxicológico. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2022. [Google Scholar]
  290. León, S.J.; Ramos, A.R. Determinación de Arsénico y Cadmio en Agua Embotellada de Consumo Humano Comercializada en Cinco Distritos. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2014. [Google Scholar]
  291. Hualán, L.F.; Magallanes, J.H. Determinación de Niveles de Arsénico y Cadmio en Bebidas Preparadas a Base de Quinua Comercializadas como Desayuno en Zonas Industriales de Santa Anita-Lima Metropolitana. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2019. [Google Scholar]
  292. Flores, A.G.; Novoa, L.M. Determinación de las Concentraciones de Plomo y Cadmio en Diferentes Marcas de Arroz (Oryza sativa) Expendidos en el Mercado Huamantanga–Puente Piedra Durante el Periodo Noviembre–Diciembre 2021. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2022. [Google Scholar]
  293. Allende, V.M.; Vidarte, N.E. Evaluación de Riesgo Toxicológico al Arsénico por Consumo de arroz Pulido Expendido en el Mercado Productores de Santa Anita–Lima, Perú 2020. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2021. [Google Scholar]
  294. Núñez, M. Cuantificación de Metales Pesados Cobre (Cu), Cadmio (Cd) y Cromo (Cr) en Alfalfa (Medicago sativa) Variedad California en el Pueblo Tradicional de Congata, 2018. Master’s Thesis, National University of San Agustín, Arequipa, Peru, 2018. [Google Scholar]
  295. Paredes, B.; Zegarra, J.R.; Zanabria, J.D.; Cuadros, F.E.; Chávez, J.E.; Huanca, P.K. Consumo de plantas medicinales de uso habitual y posible efecto adverso en la salud de la población, como resultado de la contaminación de las plantas. Arequipa Perú Revista Avances en Ciencias e Ingeniería 2018, 9, 13–22. [Google Scholar]
  296. Quijada, E.D. Bioacumulación y Transferencia de Plomo Desde el Suelo a los Pastos y Leche en la Estación Experimental El Mantaro. Bachelor’s Thesis, National University of Central Peru, Huancayo, Peru, 2021. [Google Scholar]
  297. Huanqui, R. Determinación de Metales Pesados en Pastos, Fibra, Carne y víSceras de Alpacas en Comunidades del Distrito de Ananea–Puno. Ph.D. Thesis, National University of the Altiplano, Puno, Peru, 2018. [Google Scholar]
  298. Carrillo, S.B. Concentración de Plomo en Forraje y Leche de Vacuno en Seis Zonas del Valle del Mantaro. Bachelor’s Thesis, National University of Central, Huancayo, Peru, 2013. [Google Scholar]
  299. Choquenaira, Y.; Estofanero, M. Concentración de Metales Pesados y Nivel de Riesgo en el área de Influencia del Botadero Rumicruz en el Poblado de Maranganí–Canchis–Cusco. Bachelor’s Thesis, National University of San Antonio Abad of Cusco, Cusco, Peru, 2021. [Google Scholar]
  300. Arana, B.M.; Quispe, D.G. Evaluación de la Contaminación por Plomo, Cadmio y arsénico en Desmodium Molliculum y Matricaria Chamomilla en los Caseríos Aledaños al río Alto Chicama-Distrito de Usquil–Junio 2014. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2014. [Google Scholar]
  301. Huamán, E. Fitoacumulación de Metales Pesados (Pb, Fe y Zn) por Phalaris Aquatica en Relave de la Unidad Minera Morococha–Junín. Master’s Thesis, National University of Central Peru, Huancayo, Peru, 2019. [Google Scholar]
  302. Cedrón, E.; Velásquez, K.L. Biomonitoreo de Elementos Traza Cd, Ni, Pb, Sb y As en el área Metropolitana de Huancayo-Perú, Utilizando Tillandsia Capillaris Trasplantada como un Biomonitor. Bachelor’s Thesis, National University of Central, Huancayo, Peru, 2022. [Google Scholar]
  303. Garcilazo, J.M. Evaluación de la Contaminación por Cadmio en el Cultivo del espárrago (Asparagus officinalis) cv. UC 57-F1- en campo de Pequeños Agricultores en la Zona de Santiago-La Venta con énfasis en el Cadmio en Turiones. Ph.D. Thesis, San Luis Gonzaga National University, Ica, Peru, 2021. [Google Scholar]
  304. Llerena, T.M.; Mendiola, S.P. Concentración de Mercurio en Productos Hidrobiológicos de Mayor Consumo en la Población Escolar de las Instituciones Educativas de Mollendo, Arequipa. Bachelor’s Thesis, National University of San Agustín, Arequipa, Peru, 2019. [Google Scholar]
  305. De La Cruz, F. Metales Pesados en el Agua y Trucha de las Piscigranjas Ubicadas en el Río Apacheta, Vinchos, Huamanga, Ayacucho. Ph.D. Thesis, Hermilio Valdizán National University, Huanuco, Peru, 2022. [Google Scholar]
  306. Chui, H.; Roque, B.; Huaquisto, E.; Sardón, D.L.; Belizario, G.; Calatayud, A.P. Metales pesados en truchas arcoíris (Oncorhynchus mykiss) de crianza intensiva de la zona noroeste del lago Titicaca. Revista de Investigaciones Veterinarias del Perú 2021, 32, e20398. [Google Scholar] [CrossRef]
  307. Bertolotti, F.; Moccetti, N. Concentración de plomo, mercurio y cadmio en músculo de peces y muestras de agua procedentes del Río Santa, Ancash–Perú. Salud Tecnol. Vet. 2018, 1, 35–41. [Google Scholar] [CrossRef]
  308. Cárdenas, L.E. Bioacumulación de Plomo y Cadmio en el Tejido Muscular de la Especie Salmo trutta (Trucha) Procedentes de 3 ríos de la Provincia de Espinar, Cusco–2020. Bachelor’s Thesis, National Agrarian University of the Selva, Tingo María, Peru, 2021. [Google Scholar]
  309. Panduro, G.; Rengifo, G.C.; Barreto, J.L.; Arbaiza-Peña, Á.; Iannacone, J.; Alvariño, L.; Crnobrna, B. Bioacumulación por Mercurio en Peces y Riesgo por Ingesta en Una Comunidad Nativa en la Amazonia Peruana. Rev. Inv. Vet. Perú 2020, 31, e18177. [Google Scholar] [CrossRef]
  310. Rengifo, G.C.; Barreto, J.L. Bioacumulación de Mercurio en Peces de Mayor Consumo Humano y su Riesgo en la Salud a Través del Nivel de Exposición por Ingesta, en los Pobladores de la Comunidad Nativa Santa Rosa de la Cuenca Baja del río Abujao, Región Ucayali–2016. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2017. [Google Scholar]
  311. Espinoza, D.; Falero, S. Niveles de mercurio, cadmio, plomo y arsénico en peces del río Tumbes y riesgos para salud humana por su consumo. Rev. del Instituto de Investigación (RIIGEO). FIGMMG-UNMSM 2015, 18, 35–41. [Google Scholar]
  312. Gonzalez-Pestana, A.; Alfaro-Shigueto, J.; Mangel, J.C.; Espinoza, P. Niveles de Mercurio en el Tiburón Martillo Sphyrna zygaena (Carcharhiniformes: Sphyrnidae) del Norte del Perú. Rev. Peru Biol. 2017, 24, 407–411. [Google Scholar] [CrossRef]
  313. Rivas, W. Determinación de Arsénico, Mercurio y Plomo en Truchas (Oncorhynchus mykiss), Piensos y Agua de Piscigranjas del Distrito de Pachangara, Provincia de Oyón, región Lima. Master’s Thesis, National University of San Marcos, Lima, Peru, 2018. [Google Scholar]
  314. Navarro, Y. Contenido Químico-Bromatológico del Músculo de Pseudoplatystoma sp. “Doncella” Procedente del río Apurímac-Ayacucho 2011. Bachelor’s Thesis, National University of San Cristóbal de Huamanga, Ayacucho, Peru, 2015. [Google Scholar]
  315. Boletín de Investigación. Información Nutricional Sobre Algunos Peces Comerciales de la Amazonía Peruana; Instituto Tecnológico Pesquero del Perú: Lima, Perú, 2009.
  316. Rojas, R. Calidad de Agua, Bioacumulación de Metales Pesados y Niveles de Estrés en la Trucha Arcoíris (Oncorhynchus mykiss) en las Jaulas Flotantes del Distrito de Chucuito–Puno. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2022. [Google Scholar]
  317. Foraquita, J.A. Valoración de Riesgo Ambiental por Presencia de Plomo y Mercurio en la: Trucha (Salmo trutta), Pejerrey (Odontesthes Regia Regia), Provenientes de la Zona de Arapa. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2018. [Google Scholar]
  318. Nifla, A. Evaluación del Contenido de Mercurio en Pescados Comerciales Expendidos en el Mercado de Ventanilla, Lima-Perú. Master’s Thesis, Jorge Basadre Grohmann National University, Tacna, Peru, 2017. [Google Scholar]
  319. Yaulimango, R.; Tarazona, S. Niveles de Metales Pesados en Sarda Chiliensis Chiliensis (Bonito) como Factor de Riesgo para la Salud del Consumidor, Huacho–2017. Bachelor’s Thesis, José Faustino Sánchez Carrión National University, Huacho, Peru, 2018. [Google Scholar]
  320. Alminagorta, E. Evaluación de Bioacumulación de Metales Pesados en el pez Bagre (Rhamdia Quelen) en el Rio Urubamba del Centro Poblado de Uritúyocc en el Distrito de Marcas. Bachelor’s Thesis, National University of Huancavelica, Huancavelica, Peru, 2018. [Google Scholar]
  321. Bautista, C.A. Evaluación del Contenido de Metales Pesados en Carne y Tejido óseo de Trucha Arco Iris (Oncorhynchus mykiss) Producidos en el Centro Poblado de Paccho Molinos, Paucará–Huancavelica. Bachelor’s Thesis, National University of Huancavelica, Huancavelica, Peru, 2018. [Google Scholar]
  322. Vásquez, A.P. Calidad Sanitaria de las Especies: Prochilodus Nigricans (Boquichico), Pimelodus Blochii (Bagre) y Mylossoma Duriventre (palometa) por Presencia de Plomo (pb) en las aguas del río Ucayali; Tramo: Confluencia del rio Tambo con el Rio Urubamba Hasta la Desembocadura del rio Pachitea, en la Región Ucayali-julio 2017. Bachelor’s Thesis, National University of Ucayali, Pucallpa, Peru, 2018. [Google Scholar]
  323. Huaypar, K.H. Exposición a Mercurio por Consumo de Pescados Contaminados, en la Población de Puerto Maldonado, Región de Madre de Dios. Master’s Thesis, National University of San Antonio Abad of Cusco, Cusco, Peru, 2022. [Google Scholar]
  324. Cóndor, E.A. Concentración de Plomo, Cobre, Zinc y Arsénico en Agua, Sedimento y Peces del Río Tishgo, Yauli–Junín. Bachelor’s Thesis, National University of Central Peru, Huancayo, Peru, 2021. [Google Scholar]
  325. Nina, N.V. Evaluación de los Niveles de Concentración del Mercurio en Especies de Tiburón Azul Comercializados en el Desembarcadero Pesquero Artesanal de la Provincia de Ilo–2021. Bachelor’s Thesis, National University of Moquegua, Moquegua, Peru, 2022. [Google Scholar]
  326. Jacinto, M.E.; Aguilar, S. Concentraciones traza de metales en especies marinas de la bahía de Huarmey, Ancash, Perú. Rev. Peru Biol. 2007, 14, 307–312. [Google Scholar] [CrossRef]
  327. Rodriguez, R. Cuantificación de las Concentraciones de Metales Pesados (Pb, Cd, Cu) por Espectrofotometría de Absorción Atómica de los Peces Pelágio de la Bahía del Callao. Bachelor’s Thesis, National University of Callao, Bellavista, Peru, 2022. [Google Scholar]
  328. Mauricio, C.A.; Pérez, E.C. Concentración de Mercurio en Pescados Frescos Comercializados en el Terminal Pesquero de Buenos Aires, Trujillo; Agosto–Setiembre, 2018. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2018. [Google Scholar]
  329. Gallozo, A.; Yauri, J.P. Macroinvertebrados Acuáticos como Bioindicadores de la Calidad del Agua, Relacionados con Metales Pesados en la sub Cuenca Yanayacu-Ancash, Setiembre 2015–Abril 2016. Bachelor’s Thesis, Santiago Antúnez de Mayolo National University of Áncash, Huaraz, Peru, 2017. [Google Scholar]
  330. Condori, L. Estudio Comparativo de Bioacumulación de Metales Pesados Cd, Pb, y Hg con Bioindicadores Concholepas Concholepas, Fissurella Latimarginata y Thais Chocolata en Bancos Naturales de Punta Meca y Santa Rosa en el Distrito de Ite de la Región Tacna, Año 2018. Bachelor’s Thesis, National University of Moquegua, Moquegua, Peru, 2020. [Google Scholar]
  331. Mamani, R.M. Sistema de Depuración natural de Metales Pesados, Cadmio, Plomo y Mercurio; para el Choro (Aulacomya Atra), en el Puerto de Ilo. Bachelor’s Thesis, National University of San Agustín, Arequipa, Peru, 2019. [Google Scholar]
  332. Surco, F.A.; Conislla, C.; Rodriguez, V.; García, J.A.; Bendezú, M.D.; Obando, C. Niveles de Metales Pesados (Cd, Cr, Pb, Mn) en Aulacomya Atra (Molina, 1782) “Choro” en la Bahía de Paracas. Ñawparisun-Revista de Investigación Científica Revista de Investigación Científica 2021, 3, 19–22. [Google Scholar]
  333. Cárdenas, F.L. Bioacumulación en Moluscos Gasterópodos Marinos por Arsénico, Cadmio, Cobre, Mercurio y Plomo en el áRea Natural Protegida Punta Coles, Ilo–Moquegua. Master’s Thesis, National University of San Agustín, Arequipa, Peru, 2017. [Google Scholar]
  334. Cárdenas, F.P.; Cuba, R.; Baldarrago, D.; Castañeda, V.; Romucho, Y. Trazas de Metales en Agua, Sedimento y Organismos Bentónicos en Bancos Naturales de las Regiones Tacna y Moquegua; Instituto del Mar del Perú: Huanchaco, Peru, 2015. [Google Scholar]
  335. Sánchez, C.D. Estudio de Contaminación del Agua de mar por Metales Pesados en Moluscos Bivalvos en las Zonas Aledañas a la Bahía de Ite (Lozas, Meca, Santa Rosa y Picata), Tacna. Master’s Thesis, Jorge Basadre Grohman National University, Tacna, Peru, 2022. [Google Scholar]
  336. Pérez, L. Concentración de Plomo, Cadmio y Zinc en Músculo de Alpaca (Vicugna Pacos) Beneficiados en el Camal de Huancavelica. Master’s Thesis, National University of Central Peru, Huancayo, Peru, 2019. [Google Scholar]
  337. Iquise, V.R. Metales Pesados en Carne y vísceras de Alpacas de dos Comunidades del Distrito de Ananea. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2017. [Google Scholar]
  338. Fernandez, R.E.; Ramos, S.L. Determinación Cuantitativa de Arsénico, Cadmio y Plomo en Leche de Ganado Vacuno en una Localidad de la Provincia de Arequipa–2020. Bachelor’s Thesis, National University of Moquegua, Moquegua, Peru, 2020. [Google Scholar]
  339. Velarde, J.A. Determinación de Metales Pesados en Leche de Vaca, Pasto y Agua de la Microcuenca del rio Llallimayo, Melgar–Puno. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2021. [Google Scholar]
  340. Pacco, D. Determinación de Metales Pesados en Leche y Pelo de Vacas de la Cuenca del rio Llallimayo Melgar–Puno. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2018. [Google Scholar]
  341. Sáenz, L.A. Presencia de Metales Pesado en la Leche de Consumo Humano en el Valle de Cajamarca. Ph.D. Thesis, National University of Cajamarca, Cajamarca, Peru, 2019. [Google Scholar]
  342. Chata, A. Presencia de Metales Pesados (Hg, As, Pb y Cd) en Agua y Leche en la Cuenca del Rio Coata 2015. Bachelor’s Thesis, National University of the Peruvian Amazon, Iquitos, Peru, 2015. [Google Scholar]
  343. Obregón, D.C.; Zambrano, Z. Evaluación Microbiológica (Aerobios Mesófilos, Bacillus Cereus y Staphylococcus Aureus) y Químico-Toxicológica de Metales Pesados (pb, hg) en Leche para Consumo Humano en el Distrito de Puente Piedra-Lima. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2017. [Google Scholar]
  344. Mamani, G.M. Contaminación, Exposición Dietética y Riesgo para la Salud por Plomo y Cadmio en Leche en la Estación Experimental de El Mantaro–2020. Master’s Thesis, National University of Central Peru, Huancayo, Peru, 2021. [Google Scholar]
  345. Bernal, A.R. Niveles de Metales Pesados en los Hatos Lecheros del Valle de Oxapampa–Pasco. Ph.D. Thesis, National University of Central Peru, Huancayo, Peru, 2019. [Google Scholar]
  346. Bracamonte, G.H.; Bulnes, J.F. Evaluación del Contenido de Plomo y Cadmio en el Queso Andino Producido en el Distrito de Chiquián–Ancash. Bachelor’s Thesis, National University of Santa, Nuevo Chimbote, Peru, 2019. [Google Scholar]
  347. Espinoza, A.J. Evaluación Toxicológica de Plomo y Cadmio en Quesos Artesanales Expendidos en el Mercado Caquetá, Distrito del Rímac. Bachelor’s Thesis, National University of San Marcos, Lima, Peru, 2022. [Google Scholar]
  348. Merino, J.; Pillaca, L.A. Fluvalinato y Metales Pesados (Cobre y plomo) en Miel de los Sectores de Pachachaca, Atumpata y Quitasol-Abancay 2018. Bachelor’s Thesis, Micaela Bastidas National University of Apurimac, Abancay, Peru, 2019. [Google Scholar]
  349. Arroyo, J.A. Los Líquenes como Bioindicadores de Presencia de Metales Pesados en Ecosistemas de Montaña: Experiencia en la Cordillera Blanca, Ancash-Perú. Bachelor’s Thesis, La Molina National Agrarian University, Lima, Peru, 2022. [Google Scholar]
  350. Salinas, A.A. Biodiversidad, índice de Pureza Atmosférica (IPA) y Bioacumulación de Metales (Pb, Cr, Cd, Cu, Ni, Zn) en los Líquenes Presentes en las Lomas de Amoquinto, Huacaluna (Moquegua) y Tacahuay (Tacna), 2020 y 2021. Bachelor’s Thesis, National University of Moquegua, Moquegua, Peru, 2021. [Google Scholar]
  351. Guerrero, J.B. Bioacumulación de Pb y Cd en Chondracanthus Chamissoi “Mococho” del Puerto Malabrigo, La Libertad–Perú 2019. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  352. Rodríguez, M.R. Bioacumulación de Metales Pesados Trazas: Cadmio, Cobre y Plomo en Chondracanthus Chamissoi Procedente del litoral del Departamento La Libertad. Perú. Agosto 2006–Mayo 2007. Ph.D. Thesis, National University of Trujillo, Trujillo, Peru, 2010. [Google Scholar]
  353. Lozano, A.G. Bioacumulación de Cadmio y Plomo en Gracilariopsis Lemaneiformis del Puerto Malabrigo, La Libertad, Perú, 2019. Bachelor’s Thesis, National University of Trujillo, Trujillo, Peru, 2019. [Google Scholar]
  354. Salazar, M.M. Variación Espacial y Estacional de la Concentración de Metales Pesados en Lessonia Nigrescens (Bory, 1826) como Bioindicador de Contaminación en el Litoral del Puerto de Ilo Durante el 2019. Bachelor’s Thesis, National University of Moquegua, Moquegua, Peru, 2022. [Google Scholar]
  355. Silva, P.J.; Flores, O.F. Manejo de Macroalgas Pardas (Gracilariopsis Lemaneiformis) para Biorremediación del Ambiente Marino Costero, Puerto de Huacho–2019. Bachelor’s Thesis, José Faustino Sánchez Carrión National University, Huacho, Peru, 2022. [Google Scholar]
  356. Castillo, H.J. Influencia Antropogénica Minera Sobre la Sspecie Endémica Batrachophrynus mMcrostomus Peters, 1873 en Peligro de Extinción del Lago Chinchaycocha (Pasco, Junín), 2007. Ph.D. Thesis, National University of Trujillo, Trujillo, Peru, 2008. [Google Scholar]
Figure 1. Temporal increases in peer-reviewed publications in English journals (up to 2022) that focus on the presence of metals and bioaccumulation in consumer products in Peru.
Figure 1. Temporal increases in peer-reviewed publications in English journals (up to 2022) that focus on the presence of metals and bioaccumulation in consumer products in Peru.
Foods 13 00762 g001
Figure 2. Temporal evolution of metal bioaccumulation-related scientific publications (in Spanish) in Peruvian food/medicinal products.
Figure 2. Temporal evolution of metal bioaccumulation-related scientific publications (in Spanish) in Peruvian food/medicinal products.
Foods 13 00762 g002
Figure 3. Geographic distribution of bioaccumulation-related studies in Peru per administrative department.
Figure 3. Geographic distribution of bioaccumulation-related studies in Peru per administrative department.
Foods 13 00762 g003
Figure 4. (Left): Distribution (boxplots) of nation-wide metal concentrations documented in Peruvian plant-derived food/medicinal products. (Right): Geographic distribution of published bioaccumulation-related studies developed for plant-based food/medicinal products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Figure 4. (Left): Distribution (boxplots) of nation-wide metal concentrations documented in Peruvian plant-derived food/medicinal products. (Right): Geographic distribution of published bioaccumulation-related studies developed for plant-based food/medicinal products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Foods 13 00762 g004
Figure 5. (Left): Distribution (boxplots) of nationwide metal concentrations documented in Peruvian fish-derived food/medicinal products. (Right): Geographic distribution of published studies related to bioaccumulation developed for fish-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Figure 5. (Left): Distribution (boxplots) of nationwide metal concentrations documented in Peruvian fish-derived food/medicinal products. (Right): Geographic distribution of published studies related to bioaccumulation developed for fish-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Foods 13 00762 g005
Figure 6. (Left): Distribution (boxplots) of nationwide metal concentrations documented in Peruvian macroinvertebrates and mollusks. (Right): Geographic distribution of published bioaccumulation-related studies developed for macroinvertebrate- and mollusk-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Figure 6. (Left): Distribution (boxplots) of nationwide metal concentrations documented in Peruvian macroinvertebrates and mollusks. (Right): Geographic distribution of published bioaccumulation-related studies developed for macroinvertebrate- and mollusk-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Foods 13 00762 g006
Figure 7. (Left): Distribution (boxplots) of the nationwide metal concentrations documented in Peruvian mammals. (Right): Geographic distribution of published bioaccumulation-related studies developed for macroinvertebrate- and mollusk-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Figure 7. (Left): Distribution (boxplots) of the nationwide metal concentrations documented in Peruvian mammals. (Right): Geographic distribution of published bioaccumulation-related studies developed for macroinvertebrate- and mollusk-based food products in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Foods 13 00762 g007
Figure 8. (Left): Distribution (boxplots) of nationwide metal concentrations documented in other food categories in Peru. (Right): Geographic distribution of published bioaccumulation-related studies developed for food products based on other categories in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Figure 8. (Left): Distribution (boxplots) of nationwide metal concentrations documented in other food categories in Peru. (Right): Geographic distribution of published bioaccumulation-related studies developed for food products based on other categories in Peruvian administrative departments (please refer to Figure 3 for details). The WHO standards are not displayed because they are specific to the food/medicinal type.
Foods 13 00762 g008
Table 2. Percentage of analyses below the WHO’s MPLs (black), above the MPLs (red), and not regulated (blue) for all food/medicinal products found in this Peruvian review.
Table 2. Percentage of analyses below the WHO’s MPLs (black), above the MPLs (red), and not regulated (blue) for all food/medicinal products found in this Peruvian review.
HgCH3-HgAlSbAsBaBeCdCrSnNiAgPbSeTlTiU
Plants100-100100971001004110010010010032100100100100
0-00100330000140000
0-00200270000540000
Fish1001001001001001001001001001001001000100100100100
000000000000370000
000000000000630000
Macroinvertebrates and mollusks100-10010010010010048100100100100100100100100100
0-000009000000000
0-0000043000000000
Mammals100---100--100----53----
0---0--0----41----
0---0--0----6----
Others100-100-100--70100-100-67100---
0-0-0--260-0-220---
0-0-0--40-0-110---
Table 3. Metals (and number of food categories that include each of them) considered in different international standards compared to those found in this national analysis. As(1) = Total As; As(2) = Inorganic As.
Table 3. Metals (and number of food categories that include each of them) considered in different international standards compared to those found in this national analysis. As(1) = Total As; As(2) = Inorganic As.
HgCH3-HgAlSbAs(1)As(2)BaBeCdCrSnNiAgPbSeTlTiU
WHO24 6 17 8 41
Cuba82 46 47 17 60
Mercosur5 52 47 2 53
Australia–NZ13 22 5 1 6
S. Africa22 142 14 3 58
EU34 4 58 5 62
Total64801110800188036002800000
Table 4. MPLs (mg/kg) for some metals under the “Fish” and “Fruits” categories in different international food standards.
Table 4. MPLs (mg/kg) for some metals under the “Fish” and “Fruits” categories in different international food standards.
CubanWHOAustralian–NZEUBrazilianS. AfricanSweden
FishHg1.00-1.500.500.50-0.20
As1.00-2.00-1.00--
Cd0.10--0.051.00-0.10
Pb0.30-0.500.302.000.300.50
FruitHg0.00------
As0.30------
Cd0.05-----0.05
Pb0.100.100.100.100.500.100.50
Table 5. Distribution of different bioaccumulation-related publication types in Peru for all food/medicinal categories evaluated.
Table 5. Distribution of different bioaccumulation-related publication types in Peru for all food/medicinal categories evaluated.
Publication CategoryPlantsFishMacroinvertebrates and MollusksMammalsOthersTotal
Undergraduate theses951871310143
Master’s theses21544236
PhD dissertations12203219
Peer-reviewed journals13620122
Reports3530011
Total14436162015231
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tejada-Purizaca, T.R.; Garcia-Chevesich, P.A.; Ticona-Quea, J.; Martínez, G.; Martínez, K.; Morales-Paredes, L.; Romero-Mariscal, G.; Arenazas-Rodríguez, A.; Vanzin, G.; Sharp, J.O.; et al. Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products. Foods 2024, 13, 762. https://doi.org/10.3390/foods13050762

AMA Style

Tejada-Purizaca TR, Garcia-Chevesich PA, Ticona-Quea J, Martínez G, Martínez K, Morales-Paredes L, Romero-Mariscal G, Arenazas-Rodríguez A, Vanzin G, Sharp JO, et al. Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products. Foods. 2024; 13(5):762. https://doi.org/10.3390/foods13050762

Chicago/Turabian Style

Tejada-Purizaca, Teresa R., Pablo A. Garcia-Chevesich, Juana Ticona-Quea, Gisella Martínez, Kattia Martínez, Lino Morales-Paredes, Giuliana Romero-Mariscal, Armando Arenazas-Rodríguez, Gary Vanzin, Jonathan O. Sharp, and et al. 2024. "Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products" Foods 13, no. 5: 762. https://doi.org/10.3390/foods13050762

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop